异质材料焊接与连接第四届学术会议
推广
MoS2/C材料的水系铝离子超级电容器及其电化学性能

摘要: 本文采用水热法制备花状的MoS2、对MoS2进行碳化烧结制备MoS2/C复合材料。本文讨论水系电解液中的铝离子浓度对MoS2/C复合材料电化学性能的影响。结果表明,当电解液中的铝离子浓度较低时,MoS2/C电极材料的比电容较高,等效串联电阻较小,电化学性能较好。1 mol/L的AlCl3电解液在40 A/g的电流密度下,等效串联电阻为1.083 Ω,比电容达到189 F/g,表现出优良的电容性能。

钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能

用超声辅助溶液燃烧合成技术制备双层碳包覆的Na3V2(PO4)3 (NVP)钠离子电池正极材料,并对其电化学性能进行深入的研究。结果表明,双层碳包覆在NVP颗粒表面,由内自外分别为无定形硬碳和石墨烯。石墨烯添加量为5.0%(质量分数)的碳包覆NVP复合材料具有优异的电化学性能,在1 C倍率下充放电其初始比容量为117 mAh·g–1,循环300圈后容量的保持率为79%,在10 C倍率下其放电比容量高达100 mAh·g–1。这种正极材料电化学动力学性能的提高,源于均匀的双层碳包覆结构及其构建的三维电子传输通道。

纳米多孔Fe-Si-B-P的脱合金制备及其电化学性能

在0.05 mol/L H2SO4溶液中对773~833 K热处理后的Fe76Si9B10P5非晶合金进行脱合金处理,采用脱合金法制备出Fe-Si-B-P纳米多孔材料。利用X射线衍射仪、扫描电子显微镜、透射电子显微镜等手段以及电化学工作站表征其表面形貌、微观结构和组成,研究其电化学性能。结果表明,热处理后的Fe76Si9B10P5非晶合金晶化为α-Fe、Fe2B和Fe3P相,在脱合金过程中α-Fe晶粒优先溶解形成纳米多孔结构,随着热处理温度从773 K提高到833 K材料中纳米多孔的孔径从150 nm增大到260 nm。同时,较大的比表面积提供更多的催化活性位点使纳米多孔Fe-Si-B-P具有比Fe76Si9B10P5非晶合金更优异的氧化还原性能。

rGO/PANI/MnO2 三元复合材料的制备和电化学性能

用水热合成法和冻干操作制备石墨烯/聚苯胺/二氧化锰三元复合材料(rGO/PANI/MnO2),使用X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对其进行了表征。结果表明,用这种简单高效的方法制备的复合材料,具有相互交联的网络状结构和自支撑特性。在反应过程中MnO2与聚苯胺形成不规则的块状结构,共沉积在石墨烯自组装形成的网络片层上。这种复合材料具有良好的电容性能,比电容为388 F·g-1(0.5 A·g-1),优于单纯的石墨烯(rGO,234 F·g-1)和聚苯胺电极(PANI,176 F·g-1)。使用这种复合材料作为正极、rGO作为负极组装的一种不对称超级电容器,能在0~1.6 V范围内可逆循环,功率密度为17.48 W·kg-1时最大能量密度为13.5 Wh·kg-1。

ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能

使用化学气相沉积法在a面蓝宝石衬底上同步外延生长氧化锌(ZnO)竖直纳米棒阵列和薄膜,研究了阵列和薄膜的光电化学性能。结果表明,纳米结构中的竖直单晶纳米棒有六棱柱形和圆柱形,其底部ZnO薄膜使竖直纳米棒互相联通。与ZnO纳米薄膜的比较表明,这种纳米结构具有优异的光电化学性能,其入射光电流效率是ZnO纳米薄膜的2.4倍;光能转化效率是ZnO纳米薄膜的5倍。这种纳米结构优异的光电化学性能,可归因于其高表面积-体积比以及其底部薄膜提供的载流子传输通道。本文分析了这种纳米结构的生长过程,提出了协同生长机理:Au液化吸收气氛中的Zn原子生成合金,合金液滴过饱和后ZnO开始成核,随后在衬底表面生成了ZnO薄膜。同时,还发生了Zn自催化的气-固(VS)生长和Au催化的气-液-固(VLS)生长,分别生成六棱柱纳米棒和圆柱形纳米棒,制备出底部由薄膜连接的竖直纳米棒阵列。

基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究

基于电沉积技术的方法在电极表面构建聚苯胺(PANI)/海藻酸膜,直接构建PANI/海藻酸修饰电极,结合了海藻酸的阳极电沉积和苯胺的电化学聚合,具有条件温和以及后处理简便的特点。PANI/海藻酸膜呈现出与PANI类似的深绿色,其不仅可以稳定的存在于电极表面,而且还可以从电极表面取下来作为独立的膜材料。X射线衍射、红外光谱以及扫描电镜的测试结果均表明利用电沉积技术在电极表面制备得到了PANI/海藻酸膜。电化学性能分析结果表明,与PANI修饰电极相比,PANI/海藻酸修饰电极的电荷转移电阻更小,具备更高的电化学电容、更好的电荷储存能力和循环稳定性。

CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能

用原位基体加热反应磁控溅射方法制备具有强捕光和电荷分离能力的CuO纳米阵列(CuO NAs)光阴极,并改变氧分压、基底温度、腔体压力以及溅射时间等参数调控其相组成、晶体形貌、晶体生长取向、晶面暴露、厚度以及电子结构。结果表明,结构优化的CuO NAs光阴极,其光电流密度可达2.4 mA·cm-2。

碗状C@FeS2@NC复合材料的制备及其电化学性能

在二氧化硅微球表面包覆一层酚醛树脂并在高温下将其转化为碳壳,然后进行溶剂热反应、多巴胺包覆、高温硫化以及氢氧化钠刻蚀,制备出碗状C@FeS2@NC(氮掺杂碳层)复合材料。这种复合材料具有开放性三维碗状结构,能释放体积变化产生的应力,其较大的比表面积(70.67 m2·g-1)有很多的活性点位。内外双层碳壳提高了这种复合材料的导电性并提供了稳定的机械结构,外层NC具有很好的保护作用。将这种复合材料用作锂离子电池负极,在0.2 A·g-1电流密度下首圈放电比容量和充电比容量分别为954.3 mAh·g-1和847.2 mAh·g-1,对应的首圈库伦效率为88.78%。循环100圈后,其放电比容量稳定在793.8 mAh·g-1。

Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能

用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。

B掺杂MnO2的制备及其电化学性能

用一步水热法制备B3+掺杂Birnessite-MnO2负极材料,使用XRD,Raman,SEM,TEM,XPS和恒电流充放电等手段表征了材料的结构和电化学性能。结果表明,B3+掺杂前后的MnO2都是由二维纳米片组装而成的花球,B3+离子掺杂使纳米片的厚度减小,从而缩短了锂离子和电子在材料内部的传输路径;掺杂适量的B3+离子,使Birnessite-MnO2的电荷转移电阻显著降低。B3+掺杂比例为9%的电极材料,具有最优的电化学性能。在电流密度为100 mA·g-1和1000 mA·g-1的条件下,首次充电比容量分别为855.1 mAh·g-1和599 mAh·g-1,循环100次后仍然保有805 mAh·g-1和510.3 mAh·g-1的可逆比容量,容量保持率分别为94.1%和85.2%。

圆柱26700锂离子电池电化学及热特性

本文以磷酸铁锂/石墨体系26700圆柱锂离子电池为研究对象,通过使用伪二维电化学热模型进行建模,分别模拟0.5C以及1C两种不同倍率的充电策略。结果表明:模型输出结果与电池测试结果基本吻合,且在0.5C和1C恒流充电条件下,电池绝热温升实测数据与模型模拟结果基本一致。在1C充电过程中,负极因极化产生的不可逆热为主要热源,随着充电电流增加,负极过电位同步增加;而正极因锂脱嵌产生熵变,反应为吸热过程,在充电2500~3000 s期间,吸热热功率与放热热功率持平,电池温度曲线呈现平台形态。

上一页 1 下一页
共1页    到第
推荐会议
山东 - 青岛
2024年06月21日 ~ 23日
湖南 - 长沙
2024年05月31日 ~ 06月02日
河南 - 郑州
2024年06月12日 ~ 14日
江苏 - 苏州
2024年05月31日 ~ 06月02日
热搜关键词
1垃圾焚烧电厂
2高压脉冲电解废水
3新能源材料制备
4分析装置
5节能低碳 绿色发展
6俄罗斯铜矿
7安全保护车
8宁德时代
9贵金属
10移动式矿山
2024中国结构材料大会暨第十届全国有色金属结构材料制备/加工及应用技术交流会
推广

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807