热电池由基片、正极、负极、电解质、加热系统及保温材料组成,其正极材料电化学性能优劣直接影响热电池的稳定性和可靠性,研究新型正极材料是当今国内外能源材料领域热点之一。已经商业化的热电池正极材料为 FeS2,但该材料电导率低、热稳定性差,分解温度仅为500℃,尤其在高过载和开路搁置等条件下,严重影响了热电池的放电性能。
该项目采用“高温快速还原-碱性浸出解耦分离”技术生成Sr(OH)2,且其为平台产品制备多种特种锶化合物。在整个过程中,改变了原有SrCO3需再转化才能后续生产特种锶化合物的缺点,且从流程、能耗、污染和效率等方面进行有效的改善。本项目团队共30人,其中研究团队17人,设计团队6人,技术支撑7人。目前本项目工艺包和设计工作已基本完成,本项目中Sr(OH)2中试线正在格尔木工业区内建设,且正在为重庆市大足区政府进行本项目的相关锶产业规划。
在国内早期提出并实践以化学手段合成粉体材料,强调化学的过饱和度和副反应在材料合成的作用,通过引入副反应营造出局部稳定的过饱和度,防止新生态颗粒形成而将成核与晶体生长两过程彻底分开,促成以堆垛生长方式进行晶体生长;并借助离心力/向心力来延长停留时间,形成动态化学反应的材料合成体系,仅用一台反应釜完成成核—晶体生长—粒径分布控制三大过程。进一步提出先破胶、防团聚、控生长的球形化机制和“造结构”理念,通过简单的周期性造核实现材料合成的连续化,推进深化并逐渐凝结为自主知识产权的“管道式合成”连续化制备功能
采用酸浸—萃取—纯化的新工艺从锂电池正极粉末中回收镍、钴、锂、锰元素,生产电池级硫酸镍、氯化钴、碳酸锂、硫酸锰等产品,具有金属回收率高、绿色环保、生产过程稳定等优点。该技术解决了正极粉末大规模加工生产的难题,镍、钴、锂、锰回收指标均达到国内先进水平,生产成本低、产品质量高,产生的经济效益好。
本项目工艺流程为典型的冶金化工生产流程,基于大量的电气逻辑顺序控制、复杂的仪表连续调节控制等特点,采用一套包含控制技术、计算机技术、通讯技术、显示技术于一体的FCS系统,采用“3+2”网络架构,利用自动化、信息化、物联网、大数据等先进技术,打造集数字生产、数字管理、数字分析及智能决策的智能化工厂,大型化和智能化的应用,使得生产效率提高了约三倍,生产成本降低了约三分之一,通过高精度20m3反应釜控制和无人值守过程控制提高了产品一致性,结合生产管理MES信息化系统,实现三元锂电新材料生产车间“基础装备智能化、生
鉴于已研发的二烯丙基烷基季铵盐及其聚合物都以二甲基二烯丙基氯化铵(DMDAAC)为基础,而DMDAAC存在甲基基团小,亲脂性差,且甲基是饱和基团,不便于进一步改性。本系列技术成果以二烯丙基乙(甲)基和氯化苄为原料研发了二烯丙基乙(甲)苄基氯化铵阳离子单体;以二烯丙基胺和1,4-二溴丁烷、1,5-二溴戊烷为原料研发了溴化N,N-二烯丙基吡咯鎓盐和溴化N,N-二烯丙基哌啶鎓盐阳离子单体。为新型阳离子聚合物提供了新的单体和品种,赋予了二烯丙基烷基季铵盐及其聚合物新的性能。解决了二烯丙基烷基季铵盐及其聚合物品种单一,应用领域有限等问题。
安全一直就是锂离子电池的短板,热管理对所有锂电池都很重要。安全电池箱:将成组好的锂电池组放进此箱中固定好,一方面可以实现散热和预热的基本功能,另外可以快速识别热失控电芯并快速“灭火”,将热失控消灭在萌芽状态,不致产生连锁反应。
本实用新型公开了一种适用于芯片测试分选机的锁扣夹紧装置,包括主体外壳,主体外壳的左侧活动连接有定位盘,且定位盘的左侧焊接有承压柱;主体外壳内设有两组导向槽,两组导向槽之间设有放置板,放置板的两侧分别设有一组夹紧块,两组夹紧块结构相同且对称设置,夹紧块包括内嵌在主体外壳端部的加固圈和位于导向槽内的调整块,加固圈内圈上内嵌有至少一个活动的滚珠,加固圈内圈活动连接有调节杆,调节杆上设有至少一列竖直设置的若干锁孔,锁孔的孔内径小于滚珠的直径,且调节杆的底部位于调整块的上方。本实用新型通过调节杆的锁孔与加固圈的滚珠相匹配从而实现夹紧不同规格的芯片,结合辅助机构实现对芯片的双重夹紧且节省了采购成本。
材料瓶颈是限制 3D 打印、注塑成型、表面工程等新兴技术领域发展的首要问题。目前国内高端球形粉体材料主要依赖进口,价格昂贵。国产粉体材料存在氧含量高、球形度差、粒径分布宽、批次稳定性差等共性问题。射频等离子体球化制粉技术是利用等离子体的高温特性把送入到等离子体中的不规则形状粉末颗粒迅速加热熔化,熔融的颗粒在表面张力和极高的温度梯度共同作用下迅速凝固而形成球形粉体
本项目主要研究低氧超高纯钛提纯技术开发及相应装备研制,破解电子级低氧超高纯钛产业化技术难题,通过技术开发及装备研制,顺利突破形成以国产海绵钛为原料的新一代熔盐电解提纯技术以及结合电子束熔炼工艺的低氧超高纯钛生产技术,并完成产业化提纯装置开发。
低成本太阳能多晶硅制备技术是利用冶金的方法,根据杂质在硅中的物理化学性质差异性而将杂质一一去除,即利用造渣去除硼、酸洗初步去除金属杂质、定向凝固深度去除铁等金属杂质、真空熔炼除氧和磷等杂质,以及电子束熔炼精炼等组合的方式,分阶段、分种类的将杂质予以去除,使得硅纯度提高到太阳能级别(6N)。该技术相对于传统的改良西门子法,具有技术投资小、能耗低以及环境污染小等优点。
当前以石墨和钴酸锂分别作为锂离子电池负极/正极材料无法满足电动汽车等长续航里程的要求,为了匹配新一代三元正极材料的需求,负极必然使用硅碳负极材料。因此,研究硅纳米颗粒制备、硅碳负极材料制备工艺以及电化学性能具有重要学术和市场意义。
本项目成果通过一种多元醇的方法,以溶剂热法为主体、尝试微博辅助合成等新手段,关注氯离子和溴离子的协同效应,优化出2-3种新型还原剂,通过系统的合成工艺研究和纳米线形貌表征反馈,以及合成方法的再优化,获得超细银纳米最佳制备工艺路线,使得纳米线的直径控制在25nm以下,并实现了批量化生产及银纳米线墨水的制备产品的产率达到88%。银纳米线导电性能优异,同时由于纳米尺寸效应使其具备优异的透光性、耐曲挠性等,被视为是实现柔性显示的优选电极材料。
本申请公开了一种电化学电池(电池组),其包括储氢负电极(阳极),正电极(阴极)和与电极接触的固体质子传导电解质。固体质子传导电解质包含硅材料,硅材料包含至少35at%的硅。
三元材料是锂离子电池材料中重要的一类,对提高锂离子电池能量密度尤为重要。技术方研发的8系三元正极材料具有容量高(210mAh/g)、寿命长(大于1000次)、倍率型好(3C容量达到0.5C的95%),并已取得客户的认可,初步具备了产业化实施条件。由于其性能优异,具有广阔的市场前景;预计其年市场容量在3万吨以上,以18万/吨保守估计,年市场达到54亿元。
本发明公开了一种锂电池原位充放电扫描电镜测试方法,步骤包括制备锂电池、锂电池安装、原位样品台安装、参数设置、原位测试等。本发明为全固态锂电池的研究提供重要的测试表征需求和实验支撑,采用本发明方法可以清晰明确地观测到充放电过程中锂枝晶的生长行为等电池微观形貌的变化,为全固态锂电池的性能、结构和应用研究提供直接的、强有力的实验依据。
硅铁是钢铁生产消耗量最多的铁合金,我国硅铁产量占世界产量的50%以上。硅铁生产中产生大量微硅粉,其数量是硅铁量的10%左右。微硅粉也叫硅灰或称凝聚硅灰,是铁合金在冶炼硅铁和工业硅(金属硅)时,矿热电炉内产生出大量挥发性很强的SiO和Si气体,气体排放后与空气迅速氧化冷凝沉淀而成。当人体吸入粉尘后,小于2.5μm的微粒,极易深入肺部,引起中毒性肺炎或矽肺。
本发项目基于菱镁矿制备片状均一单分散纳米氢氧化镁阻燃剂和氢氧化镁纳米薄膜。具体地说是将菱镁矿煅烧生成氧化镁粉酸化除杂后,制备高纯六水氯化镁,六水氯化镁再次煅烧生成活性氧化镁,通过控制常压水化条件,可分别制备出均匀六方片状单分散纳米氢氧化镁和氢氧化镁纳米薄膜。本发明中的盐酸、水以及添加剂可循环利用,环境友好,成本低廉。可以盘活现有的菱镁矿资源,实现资源的高附加值加工利用。
本项技术利用我国富有的钒钛资源,开发高性能新材料,全部或部分替代稀有金属钨,并在超硬合金材料制备工艺等方面取得关键技术突破。制备的微纳米Ti(C,N)基金属陶瓷刀具材料,成本仅占同类进口产品的30-40%,各项性能指标达国内外先进水平,竞争优势明显。
一种电解水析氢阴极及其制备方法,涉及水分解电极技术领域,电解水析氢阴极包括多孔导电基底、纳米线阵列层、析氢催化剂层,纳米线阵列层为钴基纳米线阵列,析氢催化剂层为富镍的镍钼合金催化剂。本发明在多孔导电基底上生长钴基纳米线阵列,可以增大电极材料的比表面积,经电化学活性处理后,作为碱液电解水制氢,表现出优异的析氢活性和高稳定性;且本发明采用物理共溅射方法在钴基纳米线阵列表面沉积富镍的镍钼合金催化剂,活化处理后作为碱液电解水制氢的阴极,催化剂层覆盖均匀,厚度可控,与基底结合牢固,便于大规模工业化生产。
陈亚楠课题组开发的超快速合成高质量石墨烯,金属纳米颗粒等纳米材料的新方法,在材料合成领域具有重要意义,引起国际同行的广泛关注。
本发明公开了一种太阳能光伏电解水制氢装置,包括太阳光伏电池模块(1)、稳压控制模块(2)、水解池模块(3)、供水/集气模块(4),稳压控制模块(2)连接太阳光伏电池模块(1),太阳光伏电池模块(1)提供可再生电能,通过稳压控制模块(2)稳定输出电压,为水解池模块(3)供电,供水/集气模块(4)与水解池模块(3)相连。本发明采用双柱型压控式供水/集气一体化模块与水解池模块直接连接,能实现智能化压力控制注水和集气功能,装置结构设计简单、合理巧妙,工艺成本低廉,可规模化拓展,降低工业制氢成本。
本发明提出了一种锂电池的凝胶电解质及其应用,所述凝胶电解质至少包括以下组分:有机溶剂;锂盐;以及功能添加剂,所述功能添加剂包括4?二氢嘧啶?2?基脲基甲基丙烯酸乙酯、2,2,3,3,3?五氟丙基丙烯酸酯或季戊四醇四丙烯酸酯中的一种或多种。本发明提出一种锂电池的凝胶电解质及其应用,能够提高锂离子电池的循环性能。
本发明涉及一种宽禁带半导体电解质及其制备方法和宽禁带半导体电解质燃料电池及其组装方法,上述电解质为一种由共沉淀法制备的氧化镁纳米粉末,其具有6.29eV的宽带隙值,在420?500℃下也具有可观的离子电导率,利用其组装形成的燃料电池在低温区间表现出优良的输出功率、较好的可重复性和超过100小时的稳定性,与现有的固体氧化物燃料电池相比,本发明提供的燃料电池可有效降低固体氧化物燃料电池的运行温度,在低温区间具有明显优势。
本发明公开一种电解铜箔制作装置,包括阳极座和固定在阳极座上方的阴极辊,其特征在于:阴极辊一侧由左至右依次设置有剥离机构、碾压机构、压紧机构、抛磨机构、防氧化装置、水洗装置、烘干装置、收卷辊、导向辊、分切机构、集屑机构和分卷辊;本发明通过设置特殊的剥离机构可以防止由阴极辊上剥离下的毛箔出现断裂现象,同时通过将碾压机构和压紧机构配合使用,可以进一步提高毛箔的延伸率,此外,还在整个设备的尾部设置有分切机构和集屑机构,这样不仅可以实现快速分切分卷,防止对其进行搬运而导致其划伤,同时也可以防止铜屑掉落在铜箔上将其划伤或是产生其他缺陷,最终不仅可以提高生产效率,还可以提高产品品质质量。
本发明公开了含氮化合物的新用途、电解液添加剂组合物以及电池电解液,本发明的含氮化合物在抑制高浓度硫酸乙烯酯溶液(DTD)高温存储时分解方面有显著的作用。为硫酸乙烯酯溶液(DTD)原料的存储、运输提供了一种独创性的新思路。
本实用新型公开了一种元器件转向装置及其半导体分选机,包括支撑座、转动座、吸附装置和定位装置,所述转动座设置在所述支撑座的顶部,所述吸附装置设置在所述转动座的顶部,且与所述转动座传动连接,所述定位装置设置在所述吸附装置的顶部,且与所述吸附装置可拆卸连接;当元器件转移至本装置时,元器件卡入所述定位装置,并通过所述吸附装置吸附元器件的底部,使元器件固定于所述定位装置上,避免元器件在转向过程中甩出所述定位装置,然后再通过所述转动座带动所述吸附装置转动,对元器件的方向进行校正,此外,可通过更换不同的定位装置满足不同元器件的使用需求。
本发明涉及电解液、氟化物离子电池以及电解液的制造方法。本公开内容的主要目的在于,提供即使在含有氟化铯(CsF)的情况下也具有高浓度的活性氟化物离子的电解液。在本公开内容中,通过提供如下电解液而解决上述课题,所述电解液用于氟化物离子电池,含有氟化铯和溶剂,水分量为50ppm以上且1100ppm以下。
本发明提供了一种锂离子电池电解液添加剂、锂离子电池电解液和锂离子电池。所述添加剂的结构式如式A?1或式A?2所示,其吡嗪结构上的N原子有孤对电子,可与氢氟酸中的质子氢结合,氢氟酸中的氟原子可以和添加剂断键后的结构结合,转化为耐氧化性更佳的氟代有机分子,通过消除电池充放电过程中产生的氢氟酸,明显提升电池于高压下的电性能和循环寿命。此外,添加剂及其与酸的反应产物中含有不饱和键,可形成致密的CEI膜,有利于锂离子在正极界面的迁移,且未与质子氢结合的吡嗪结构上的N原子仍有孤对电子,可与正极表面的过渡金属离子络合,抑制其在高压下的溶出,进一步提升电池循环寿命。#imgabs0#式A?1#imgabs1#式A?2。
本发明公开了一种用于微细电解加工碳化钨硬质合金的电解装置及方法,其中,所述电解装置包括设置在电解池中的工具电极、工件电极、辅助电极、第一电路结构和第二电路结构;所述电解池内设置有中性电解液;所述辅助电极与所述工具电极之间通过绝缘层隔开;所述第一电路结构包括可调直流电源E1、氮化镓功率晶体管Q1和氮化镓功率晶体管Q2;所述第二电路结构包括可调直流电源E2、氮化镓功率晶体管Q3和氮化镓功率晶体管Q4;通过施加正脉冲电压和负脉冲电压交替作用在所述电解装置中,实现对碳化钨硬质合金的连续电化学溶解。本发明的电解装置可
中冶有色为您提供最新的有色金属新能源材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!