合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 新能源材料技术

> 超低温锂离子电池负极材料的制备方法与流程

超低温锂离子电池负极材料的制备方法与流程

343   编辑:中冶有色技术网   来源:西安亚弘泰新能源科技有限公司  
2023-10-26 13:53:23
一种超低温锂离子电池负极材料的制备方法与流程

1.本发明属于锂离子电池技术领域,具体是涉及一种超低温锂离子电池负极材料的制备方法。

背景技术:

2.锂电池具有比能量高、循环寿命长、无记忆效应等特点,而且绿色环保,无污染,因此被广泛应用于手机、笔记本电脑等数码产品中,同时在电动汽车、电动自行车、国防装备等行业也得到广泛应用。近几年,锂电池在各个领域的应用越来越广泛,电池使用的环境复杂,对电池的性能要求也更高,例如低温倍率电池,应用于启动设备上时,要求在

?

40℃甚至更低温度下,也能快速将设备启动。但目前锂离子蓄电池的低温性能相对较差,特别是在

?

30℃以下的低温环境中的工作性能较差。现有的锂离子电池负极材料的主要成分为人造石墨,其导电效果较差,尤其在低温环境下,其导电性能更差。

3.公开号为cn102832378的中国专利申请公开了一种锂离子电池碳负极材料,它以天然石墨为核心,热解碳为包覆原料,在包覆过程中参杂碳纳米管。经该方法处理制备的天然石墨在

?

10℃容量保持率可达84.6%,

?

20℃容量保持率可达75.2%,大倍率重放电性能良好。但是该工艺比较复杂,产品成本高,且在制备过程中核壳层厚度的均一性难以控制。为此,寻求一种工艺简单、制备过程易于控制、价格低廉的超低温(≤50℃)锂离子电池负极材料是很有必要的。

技术实现要素:

4.本发明的目的在于克服上述现有技术中的不足,提供一种超低温锂离子电池负极材料的制备方法,其工艺简单、制备过程易于控制、价格低廉,有利于工业化生产。

5.为实现上述目的,本发明采用的技术方案是:一种超低温锂离子电池负极材料的制备方法,其特征在于,包括以下步骤:

6.步骤一、取20g~100g生物质材料放入粉碎机中搅拌粉碎0.3h~0.5h后,取出放置于在氮气保护下的真空管式炉中煅烧,所述真空管式炉以3℃/min~5℃/min的升温速率从室温升至400℃~600℃,恒温保持2h~3h后,以3℃/min~5℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;

7.步骤二、将步骤一中得到的一次粗产品加入到0.1mol~0.2mol的浓酸中,放入功率为70w~90w的超声仪中超声处理0.4h~0.6h后,放入鼓风干燥箱在温度为90℃~110℃的条件下烘干2h~3h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以3℃/min~5℃/min的升温速率升至800℃~850℃,恒温保持3h~4h后,以3℃/min~5℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;

8.步骤三、将步骤二中得到的二次粗产品加入到0.1mol~0.2mol的浓酸中,放入功率为70w~90w的超声仪中超声处理0.4h~0.6h后,放入鼓风干燥箱在温度为90℃~110℃的条件下烘干2h~3h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;

9.步骤四、取1g~5g磷粉末,并将所取的磷粉末加入至100ml~150ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;

10.步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为1:15~1:3加入到步骤四中得到的磷溶液中混合均匀,放入功率为70w~90w的超声仪中超声处理0.5h~1h后,放入温度为150℃~190℃的水热反应釜中水热反应20h~30h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂质3~5次,再放入温度为90℃~110℃的鼓风干燥箱中烘干1h~2h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为400℃~600℃、固化保温时间为3h~10h,碳化温度为650℃~1400℃、碳化保温时间为5h~21h,得到单质磷包覆改性生物质碳;

11.步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为1:20~1:5混合后研磨1h~3h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处理和碳化处理,固化温度为50℃~500℃、固化保温时间为3h~10h,碳化温度为750℃~1500℃、碳化保温时间为5h~24h,即可得到成品超低温锂离子电池负极材料。

12.上述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤一中所述生物质材料为秸秆、稻壳或苜蓿中的一种或几种,所述秸秆为玉米杆、亚麻杆、谷杆或荞麦杆中的一种或几种。

13.上述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤二中和步骤三中所述浓酸为浓盐酸或浓硫酸。

14.上述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤二中和步骤三中所述过筛处理采用的筛子为300目筛子。

15.上述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤三中所述球磨处理的时间为0.2h~0.4h。

16.上述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤四中所述磷粉末彻底分散在水中的方法是指:先在功率为150w~170w的超声仪中超声处理0.4h~0.6h,然后放在磁力搅拌器上搅拌0.2h~0.4h。

17.上述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤五中所述磷粉末为白磷、红磷和紫磷的一种或几种。

18.上述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤五中所述洗涤液为甲醇、聚碳酸酯溶液、无水乙醇、二甲基甲酰胺或n

?

甲基吡咯烷酮。

19.上述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤六中所述软碳壳层材料为低温沥青、煤沥青、石油沥青、中间相沥青、聚丙烯腈、环氧树脂或酚醛树脂。

20.本发明与现有技术相比具有以下优点:

21.1、本发明锂离子电池的负极材料是以生物质材料为原材料,生物质材料在自然界中广泛存在,成本低廉,原材料来源广泛,非常容易获得,经两步碳化法制成生物质碳,不会产生有毒气体,环境友好。

22.2、本发明制备方法简便,通过碳化的方法,可以两步得到需要的锂电池负极碳材料,不需要通过其他化学合成的方法,碳化温度不超过900℃,很大程度上节约了能源。

23.3、本发明制备的产品作为低温锂电池负极材料,循环性能好,低温性能好、高倍率

充放电性能好,可以满足人们的实际需要。

24.4、本发明工艺简单、制备过程易于控制、价格低廉,易于工业大规模化生产。

25.下面通过附图和实施例,对本发明做进一步的详细描述。

附图说明

26.图1为本发明制备方法制备的超低温锂离子电池负极材料的电镜图。

具体实施方式

27.本发明超低温锂离子电池负极材料的制备方法通过实施例1

?

7进行描述:

28.实施例1

29.本实施例超低温锂离子电池负极材料的制备方法,包括以下步骤:

30.步骤一、取40g生物质材料放入粉碎机中搅拌粉碎0.5h后,取出放置于在氮气保护下的真空管式炉中煅烧,所述真空管式炉以3℃/min的升温速率从室温升至400℃,恒温保持2.5h后,以3℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;

31.其中,所述生物质材料为秸秆,所述秸秆为玉米杆;

32.步骤二、将步骤一中得到的一次粗产品加入到0.2mol的浓硫酸(浓硫酸是指质量分数大于或等于70%的硫酸水溶液)中,放入功率为70w的超声仪中超声处理0.5h后,放入鼓风干燥箱在温度为90℃的条件下烘干2h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以3℃/min的升温速率升至800℃,恒温保持4h后,以5℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;所述过筛处理采用的筛子为300目筛子;

33.步骤三、将步骤二中得到的二次粗产品加入到0.2mol的浓硫酸中,放入功率为70w的超声仪中超声处理0.5h后,放入鼓风干燥箱在温度为110℃的条件下烘干2.5h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;所述球磨处理采用的设备为球磨机,所述球磨机的转速为400r/min,所述球磨处理的时间为0.3h,所述过筛处理采用的筛子为300目筛子;

34.步骤四、取3g磷粉末,并将所取的磷粉末加入至150ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;所述磷粉末彻底分散在水中的方法是指:先在功率为170w的超声仪中超声处理0.5h,然后放在磁力搅拌器上搅拌0.4h;

35.步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为1:15加入到步骤四中得到的磷溶液中混合均匀,放入功率为90w的超声仪中超声处理0.8h后,放入温度为150℃的水热反应釜中水热反应30h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂质3次,再放入温度为90℃的鼓风干燥箱中烘干1.5h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为400℃、固化保温时间为6h,碳化温度为1400℃、碳化保温时间为21h,得到单质磷包覆改性生物质碳;

36.其中,所述磷粉末为白磷;所述洗涤液为甲醇;

37.步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为1:20混合后研磨3h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处

理和碳化处理,固化温度为500℃、固化保温时间为10h,碳化温度为1200℃、碳化保温时间为24h,即可得到成品超低温锂离子电池负极材料,如图1所示。其中,所述软碳壳层材料为低温沥青。

38.实施例2

39.本实施例超低温锂离子电池负极材料的制备方法,包括以下步骤:

40.步骤一、取20g生物质材料放入粉碎机中搅拌粉碎0.4h后,取出放置于在氮气保护下的真空管式炉中煅烧,所述真空管式炉以4℃/min的升温速率从室温升至500℃,恒温保持2h后,以4℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;

41.其中,所述生物质材料为稻壳;

42.步骤二、将步骤一中得到的一次粗产品加入到0.1mol的浓盐酸(浓盐酸是指质量分数约为37%的盐酸水溶液)中,放入功率为80w的超声仪中超声处理0.4h后,放入鼓风干燥箱在温度为100℃的条件下烘干3h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以4℃/min的升温速率升至820℃,恒温保持3.5h后,以4℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;所述过筛处理采用的筛子为300目筛子;

43.步骤三、将步骤二中得到的二次粗产品加入到0.1mol的浓盐酸中,放入功率为80w的超声仪中超声处理0.4h后,放入鼓风干燥箱在温度为100℃的条件下烘干2h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;所述球磨处理采用的设备为球磨机,所述球磨机的转速为200r/min,所述球磨处理的时间为0.4h,所述过筛处理采用的筛子为300目筛子;

44.步骤四、取1g磷粉末,并将所取的磷粉末加入至130ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;所述磷粉末彻底分散在水中的方法是指:先在功率为150w的超声仪中超声处理0.6h,然后放在磁力搅拌器上搅拌0.2h;

45.步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为1:5加入到步骤四中得到的磷溶液中混合均匀,放入功率为80w的超声仪中超声处理0.5h后,放入温度为190℃的水热反应釜中水热反应25h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂质4次,再放入温度为110℃的鼓风干燥箱中烘干1h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为600℃、固化保温时间为3h,碳化温度为1200℃、碳化保温时间为13h,得到单质磷包覆改性生物质碳;

46.其中,所述磷粉末为白磷和红磷的混合物,白磷和红磷的重量比为1:1;所述洗涤液为甲醇;

47.步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为1:10混合后研磨1h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处理和碳化处理,固化温度为50℃、固化保温时间为3h,碳化温度为750℃、碳化保温时间为5h,即可得到成品超低温锂离子电池负极材料。其中,所述软碳壳层材料为煤沥青。

48.实施例3

49.本实施例超低温锂离子电池负极材料的制备方法,包括以下步骤:

50.步骤一、取70g生物质材料放入粉碎机中搅拌粉碎0.3h后,取出放置于在氮气保护

下的真空管式炉中煅烧,所述真空管式炉以5℃/min的升温速率从室温升至500℃,恒温保持2h后,以3℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;

51.其中,所述生物质材料为苜蓿;

52.步骤二、将步骤一中得到的一次粗产品加入到0.15mol的浓硫酸中,放入功率为70w的超声仪中超声处理0.6h后,放入鼓风干燥箱在温度为100℃的条件下烘干2h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以5℃/min的升温速率升至850℃,恒温保持4h后,以3℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;所述过筛处理采用的筛子为300目筛子;

53.步骤三、将步骤二中得到的二次粗产品加入到0.15mol的浓硫酸中,放入功率为90w的超声仪中超声处理0.5h后,放入鼓风干燥箱在温度为90℃的条件下烘干2h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;所述球磨处理采用的设备为球磨机,所述球磨机的转速为300r/min,所述球磨处理的时间为0.2h,所述过筛处理采用的筛子为300目筛子;

54.步骤四、取3g磷粉末,并将所取的磷粉末加入至100ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;所述磷粉末彻底分散在水中的方法是指:先在功率为170w的超声仪中超声处理0.5h,然后放在磁力搅拌器上搅拌0.3h;

55.步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为1:15加入到步骤四中得到的磷溶液中混合均匀,放入功率为70w的超声仪中超声处理0.6h后,放入温度为160℃的水热反应釜中水热反应20h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂质5次,再放入温度为100℃的鼓风干燥箱中烘干2h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为500℃、固化保温时间为10h,碳化温度为650℃、碳化保温时间为5h,得到单质磷包覆改性生物质碳;

56.其中,所述磷粉末为红磷,所述洗涤液为无水乙醇;

57.步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为1:5混合后研磨2h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处理和碳化处理,固化温度为450℃、固化保温时间为6h,碳化温度为1500℃、碳化保温时间为15h,即可得到成品超低温锂离子电池负极材料。其中,所述软碳壳层材料为石油沥青。

58.实施例4

59.本实施例超低温锂离子电池负极材料的制备方法,包括以下步骤:

60.步骤一、取80g生物质材料放入粉碎机中搅拌粉碎0.5h后,取出放置于在氮气保护下的真空管式炉中煅烧,所述真空管式炉以5℃/min的升温速率从室温升至600℃,恒温保持2.5h后,以3℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;

61.其中,所述生物质材料为秸秆,所述秸秆为玉米杆和亚麻杆的混合物,所述玉米杆和亚麻杆的质量比为1:1;

62.步骤二、将步骤一中得到的一次粗产品加入到0.2mol的浓盐酸中,放入功率为80w的超声仪中超声处理0.5h后,放入鼓风干燥箱在温度为110℃的条件下烘干2.5h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以4℃/min的升温速率升至

850℃,恒温保持3.5h后,以4℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;所述过筛处理采用的筛子为300目筛子;

63.步骤三、将步骤二中得到的二次粗产品加入到0.2mol的浓盐酸中,放入功率为80w的超声仪中超声处理0.4h后,放入鼓风干燥箱在温度为100℃的条件下烘干3h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;所述球磨处理采用的设备为球磨机,所述球磨机的转速为200r/min,所述球磨处理的时间为0.3h,所述过筛处理采用的筛子为300目筛子;

64.步骤四、取2g磷粉末,并将所取的磷粉末加入至150ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;所述磷粉末彻底分散在水中的方法是指:先在功率为160w的超声仪中超声处理0.4h,然后放在磁力搅拌器上搅拌0.3h;

65.步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为1:3加入到步骤四中得到的磷溶液中混合均匀,放入功率为90w的超声仪中超声处理0.5h后,放入温度为150℃的水热反应釜中水热反应25h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂质4次,再放入温度为90℃的鼓风干燥箱中烘干1h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为400℃、固化保温时间为6h,碳化温度为900℃、碳化保温时间为10h,得到单质磷包覆改性生物质碳;

66.其中,所述磷粉末为红磷,所述洗涤液为聚碳酸酯溶液;

67.步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为1:10混合后研磨1h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处理和碳化处理,固化温度为250℃、固化保温时间为10h,碳化温度为1100℃、碳化保温时间为24h,即可得到成品超低温锂离子电池负极材料。其中,所述软碳壳层材料为中间相沥青。

68.实施例5

69.本实施例超低温锂离子电池负极材料的制备方法,包括以下步骤:

70.步骤一、取100g生物质材料放入粉碎机中搅拌粉碎0.4h后,取出放置于在氮气保护下的真空管式炉中煅烧,所述真空管式炉以3℃/min的升温速率从室温升至400℃,恒温保持3h后,以4℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;

71.其中,所述生物质材料为秸秆和稻壳的混合物,所述秸秆和稻壳的质量比为1:2,所述秸秆为玉米杆、亚麻杆和谷杆的混合物,所述玉米杆、亚麻杆和谷杆的质量比为1:1:1;

72.步骤二、将步骤一中得到的一次粗产品加入到0.2mol的浓盐酸中,放入功率为90w的超声仪中超声处理0.6h后,放入鼓风干燥箱在温度为90℃的条件下烘干3h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以4℃/min的升温速率升至800℃,恒温保持3h后,以3℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;所述过筛处理采用的筛子为300目筛子;

73.步骤三、将步骤二中得到的二次粗产品加入到0.1mol的浓盐酸中,放入功率为90w的超声仪中超声处理0.6h后,放入鼓风干燥箱在温度为100℃的条件下烘干2h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;所述球磨处理采用的设备为球磨机,所述球磨机的转速为300r/min,所述球磨处理的时间为0.4h,所述过筛处理采用的筛子为300目筛子;

74.步骤四、取5g磷粉末,并将所取的磷粉末加入至100ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;所述磷粉末彻底分散在水中的方法是指:先在功率为160w的超声仪中超声处理0.5h,然后放在磁力搅拌器上搅拌0.4h;

75.步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为2:15加入到步骤四中得到的磷溶液中混合均匀,放入功率为70w的超声仪中超声处理1h后,放入温度为180℃的水热反应釜中水热反应25h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂质3次,再放入温度为110℃的鼓风干燥箱中烘干2h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为520℃、固化保温时间为3h,碳化温度为1000℃、碳化保温时间为5h,得到单质磷包覆改性生物质碳;

76.其中,所述磷粉末为白磷和紫磷的混合物,所述白磷和紫磷的重量比为1:2;所述洗涤液为二甲基甲酰胺;

77.步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为3:20混合后研磨3h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处理和碳化处理,固化温度为50℃、固化保温时间为3h,碳化温度为750℃、碳化保温时间为5h,即可得到成品超低温锂离子电池负极材料。其中,所述软碳壳层材料为酚醛树脂。

78.实施例6

79.本实施例超低温锂离子电池负极材料的制备方法,包括以下步骤:

80.步骤一、取40g生物质材料放入粉碎机中搅拌粉碎0.3h后,取出放置于在氮气保护下的真空管式炉中煅烧,所述真空管式炉以4℃/min的升温速率从室温升至600℃,恒温保持2.5h后,以5℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;

81.其中,所述生物质材料为秸秆、稻壳和苜蓿的混合物,所述秸秆、稻壳和苜蓿的质量比为1:1:1,所述秸秆为荞麦杆;

82.步骤二、将步骤一中得到的一次粗产品加入到0.15mol的浓硫酸中,放入功率为80w的超声仪中超声处理0.5h后,放入鼓风干燥箱在温度为110℃的条件下烘干2.5h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以3℃/min的升温速率升至840℃,恒温保持3.5h后,以5℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;所述过筛处理采用的筛子为300目筛子;

83.步骤三、将步骤二中得到的二次粗产品加入到0.15mol的浓硫酸中,放入功率为70w的超声仪中超声处理0.5h后,放入鼓风干燥箱在温度为110℃的条件下烘干2.5h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;所述球磨处理采用的设备为球磨机,所述球磨机的转速为400r/min,所述球磨处理的时间为0.2h,所述过筛处理采用的筛子为300目筛子;

84.步骤四、取1g磷粉末,并将所取的磷粉末加入至130ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;所述磷粉末彻底分散在水中的方法是指:先在功率为160w的超声仪中超声处理0.4h,然后放在磁力搅拌器上搅拌0.2h;

85.步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为1:3加入到步骤四中得到的磷溶液中混合均匀,放入功率为80w的超声仪中超声处理0.7h后,放入温度为190℃的水热反应釜中水热反应20h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂

质4次,再放入温度为100℃的鼓风干燥箱中烘干1.5h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为600℃、固化保温时间为8h,碳化温度为1400℃、碳化保温时间为18h,得到单质磷包覆改性生物质碳;

86.其中,所述磷粉末为紫磷,所述洗涤液为甲醇;

87.步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为1:5混合后研磨2h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处理和碳化处理,固化温度为500℃、固化保温时间为6h,碳化温度为900℃、碳化保温时间为20h,即可得到成品超低温锂离子电池负极材料。其中,所述软碳壳层材料为聚丙烯腈。

88.实施例7

89.本实施例超低温锂离子电池负极材料的制备方法,包括以下步骤:

90.步骤一、取60g生物质材料放入粉碎机中搅拌粉碎0.5h后,取出放置于在氮气保护下的真空管式炉中煅烧,所述真空管式炉以3℃/min的升温速率从室温升至500℃,恒温保持2h后,以5℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;

91.其中,所述生物质材料为稻壳和苜蓿的混合物,所述稻壳和苜蓿的质量比为2:1;

92.步骤二、将步骤一中得到的一次粗产品加入到0.1mol的浓硫酸中,放入功率为90w的超声仪中超声处理0.4h后,放入鼓风干燥箱在温度为100℃的条件下烘干2h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以5℃/min的升温速率升至850℃,恒温保持3h后,以4℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;所述过筛处理采用的筛子为300目筛子;

93.步骤三、将步骤二中得到的二次粗产品加入到0.1mol的浓硫酸中,放入功率为80w的超声仪中超声处理0.6h后,放入鼓风干燥箱在温度为90℃的条件下烘干3h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;所述球磨处理采用的设备为球磨机,所述球磨机的转速为350r/min,所述球磨处理的时间为0.3h,所述过筛处理采用的筛子为300目筛子;

94.步骤四、取3g磷粉末,并将所取的磷粉末加入至130ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;所述磷粉末彻底分散在水中的方法是指:先在功率为150w的超声仪中超声处理0.6h,然后放在磁力搅拌器上搅拌0.3h;

95.步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为1:5加入到步骤四中得到的磷溶液中混合均匀,放入功率为90w的超声仪中超声处理1h后,放入温度为170℃的水热反应釜中水热反应30h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂质5次,再放入温度为100℃的鼓风干燥箱中烘干2h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为500℃、固化保温时间为10h,碳化温度为650℃、碳化保温时间为21h,得到单质磷包覆改性生物质碳;

96.其中,所述磷粉末为红磷和紫磷的混合物,所述红磷和紫磷的质量比为1:1,所述洗涤液为n

?

甲基吡咯烷酮;

97.步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为1:20混合后研磨3h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处理和碳化处理,固化温度为300℃、固化保温时间为8h,碳化温度为1500℃、碳化保温时间为

10h,即可得到成品超低温锂离子电池负极材料。其中,所述软碳壳层材料为环氧树脂。

98.为检验利用本发明实施例1

?

7制备的超低温锂离子电池负极材料的性能,将经上述步骤得到的超低温锂离子电池负极材料作为锂离子电池的负极,以锂片作为正极,采用1mol由体积比为1:1:1的ec碳酸乙烯酯、dec碳酸二乙酯和dmc碳酸二甲酯组成的溶液作为电解液,组装cr2032型扣式电池,进行充放电测试。并以现有锂离子电池负极材料作为锂离子电池的负极来组装cr2032型扣式电池,以组装的cr2032型扣式电池作为对比例,组装采用的正极和电解液与采用实施例1

?

7作为锂离子电池的负极来组装cr2032型扣式电池完全相同。然后,进行充放电测试,实施例与对比例的测试结果如下表1所示。

99.表1实施例与对比例倍率和循环性能对比表

100.[0101][0102]

由表1可知,在不同倍率充放电情况下,采用本发明制备的超低温锂离子电池负极材料组装的电池,循环容量保持率、倍率性能、低温性能均优于对比例。

[0103]

以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变换,均仍属于本发明技术方案的保护范围内。技术特征:

1.一种超低温锂离子电池负极材料的制备方法,其特征在于,包括以下步骤:步骤一、取20g~100g生物质材料放入粉碎机中搅拌粉碎0.3h~0.5h后,取出放置于在氮气保护下的真空管式炉中煅烧,所述真空管式炉以3℃/min~5℃/min的升温速率从室温升至400℃~600℃,恒温保持2h~3h后,以3℃/min~5℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到一次粗产品;步骤二、将步骤一中得到的一次粗产品加入到0.1mol~0.2mol的浓酸中,放入功率为70w~90w的超声仪中超声处理0.4h~0.6h后,放入鼓风干燥箱在温度为90℃~110℃的条件下烘干2h~3h,待冷却至室温后置于氮气保护下的真空管式炉中煅烧;所述真空管式炉以3℃/min~5℃/min的升温速率升至800℃~850℃,恒温保持3h~4h后,以3℃/min~5℃/min的降温速率降至室温,再取出研磨成粉末后,过筛取筛下物,得到二次粗产品;步骤三、将步骤二中得到的二次粗产品加入到0.1mol~0.2mol的浓酸中,放入功率为70w~90w的超声仪中超声处理0.4h~0.6h后,放入鼓风干燥箱在温度为90℃~110℃的条件下烘干2h~3h,待冷却至室温后依次进行球磨处理和过筛处理,得到生物质碳;步骤四、取1g~5g磷粉末,并将所取的磷粉末加入至100ml~150ml的水中,并将磷粉末彻底分散在水中,得到磷溶液;步骤五、将步骤三中得到的生物质碳与步骤四中的磷粉末按重量比为1:15~1:3加入到步骤四中得到的磷溶液中混合均匀,放入功率为70w~90w的超声仪中超声处理0.5h~1h后,放入温度为150℃~190℃的水热反应釜中水热反应20h~30h;之后,将水热反应产物用洗涤液洗涤酸根离子和杂质3~5次,再放入温度为90℃~110℃的鼓风干燥箱中烘干1h~2h,然后在氮气保护下条件下的真空管式炉中依次进行固化处理和碳化处理,固化温度为400℃~600℃、固化保温时间为3h~10h,碳化温度为650℃~1400℃、碳化保温时间为5h~21h,得到单质磷包覆改性生物质碳;步骤六、将软碳壳层材料与步骤五中得到的单质磷包覆改性生物质碳按重量比为1:20~1:5混合后研磨1h~3h,混合研磨均匀后在氮气保护条件下放入真空管式炉中依次进行固化处理和碳化处理,固化温度为50℃~500℃、固化保温时间为3h~10h,碳化温度为750℃~1500℃、碳化保温时间为5h~24h,即可得到成品超低温锂离子电池负极材料。2.按照权利要求1所述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤一中所述生物质材料为秸秆、稻壳或苜蓿中的一种或几种,所述秸秆为玉米杆、亚麻杆、谷杆或荞麦杆中的一种或几种。3.按照权利要求1或2所述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤二中和步骤三中所述浓酸为浓盐酸或浓硫酸。4.按照权利要求1或2所述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤二中和步骤三中所述过筛处理采用的筛子为300目筛子。5.按照权利要求1或2所述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤三中所述球磨处理采用的设备为球磨机,所述球磨机的转速为200r/min~400r/min,所述球磨处理的时间为0.2h~0.4h。6.按照权利要求1或2所述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤四中所述磷粉末彻底分散在水中的方法是指:先在功率为150w~170w的超声仪中超声处理0.4h~0.6h,然后放在磁力搅拌器上搅拌0.2h~0.4h。

7.按照权利要求1或2所述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤五中所述磷粉末为白磷、红磷和紫磷的一种或几种。8.按照权利要求1或2所述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤五中所述洗涤液为甲醇、聚碳酸酯溶液、无水乙醇、二甲基甲酰胺或n

?

甲基吡咯烷酮。9.按照权利要求1或2所述的一种超低温锂离子电池负极材料的制备方法,其特征在于:步骤六中所述软碳壳层材料为低温沥青、煤沥青、石油沥青、中间相沥青、聚丙烯腈、环氧树脂或酚醛树脂。

技术总结

本发明公开了一种超低温锂离子电池负极材料的制备方法,采用两次煅烧法对生物质材料进行碳化处理,然后进行单质磷包覆改性,再进行软碳包覆改性,最后在对软碳一单质磷双层包覆改性的生物质碳进行固化处理和碳化处理,得到最终的超低温锂离子电池负极材料。本发明的制备方法简便,成本低廉,原材料来源广泛,易于工业化生产;所制备的超低温锂离子电池负极材料循环性能好、低温性能好、高倍率充放电性能好,可以满足人们的实际需要,同时制备过程易于控制,有利于工业化生产。有利于工业化生产。有利于工业化生产。

技术研发人员:刘远见

受保护的技术使用者:西安亚弘泰新能源科技有限公司

技术研发日:2021.06.08

技术公布日:2021/9/9
声明:
“超低温锂离子电池负极材料的制备方法与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第五届中国浮选大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记