合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 采矿技术

> 独立凝汽式汽动引风机效率的测定方法

独立凝汽式汽动引风机效率的测定方法

998   编辑:中冶有色技术网   来源:西安西热节能技术有限公司  
2024-04-01 15:38:51
权利要求书: 1.一种独立凝汽式汽动引风机效率的测定方法,其特征在于,该方法基于的系统包括凝汽器(5),以及同轴设置的小汽轮机(3)和汽动引风机(17);

小汽轮机(3)的进汽口管道上设置有小汽轮机进汽压力变送器(1)、小汽轮机进汽温度测量元件(2),小汽轮机(3)的排汽口连通至凝汽器(5)的进汽口,且小汽轮机(3)的排汽口管道上设置有小汽轮机排汽绝对压力变送器(4);凝汽器(5)的循环水出口管道上设置有凝汽器循环水出水压力变送器(6)和凝汽器循环水出水温度测量元件(7),凝汽器(5)的循环水进口管道上设置有凝汽器循环水进水孔板流量计(8)、凝汽器循环水进水压力变送器(9)和凝汽器循环水进水温度测量元件(10),凝汽器(5)的凝结水出口管道上设置有热井凝结水压力变送器(11)、热井凝结水孔板流量计(12)和热井凝结水温度测量元件(13),汽动引风机(17)的进口管道上设置有汽动引风机进口气体动压测量装置(14)、汽动引风机进口气体静压测量装置(15)和汽动引风机进口气体温度测量元件(16),汽动引风机(17)的出口管道上设置有汽动引风机出口气体静压测量装置(18)和汽动引风机出口气体温度测量元件(19),汽动引风机处设置大气压力表计(20);

该方法包括以下步骤:

步骤1:利用汽动引风机进口气体动压测量装置(14)测得流量测量截面内各个网点上的时间平均动压pdi;根据式(1)计算该截面的平均动压pd;

其中n为测点数;

步骤2:利用汽动引风机进口气体温度测量元件(16)、汽动引风机进口气体静压测量装置(15)、大气压力表计(20),分别测得汽动引风机进口气体温度t1、汽动引风机进口流量测量截面处的静压pst1、汽动引风机所处环境的大气压力pa;根据式(2)计算进口流量测量截面处介质密度ρ1;

根据公式(3)计算引风机进口流量测量截面处的全压p1,根据公式(4)计算进口流量测量截面处的流量qv1;

p1=pst1+pd(3)

2

其中A1为引风机进口流量测量截面处面积,m;

步骤3:利用汽动引风机出口气体温度测量元件(19)、汽动引风机出口气体静压测量装置(18),分别测得汽动引风机出口流量测量截面处气体温度t2、汽动引风机出口气体静压pst2;根据公式(5)计算出引风机出口气体密度ρ2,根据公式(6)计算出引风机出口气体动压pd2,根据公式(7)计算出引风机出口全压p2,根据公式(8)计算出引风机进出口气体平均密度ρ,根据公式(9)计算引风机全压p,根据公式(10)计算出汽动引风机有效功率Pe;

p2=pst2+pd2(7)

p=p2?p1(9)

2

其中A2为引风机出口截面积,m;

步骤4:利用热井凝结水孔板流量计(12)测得热井凝结水流量差压Dp热井,根据孔板流量计的设计资料,计算出热井凝结水流量Q热井;

步骤5:利用小汽轮机进汽压力变送器(1)、小汽轮机进汽温度测量元件(2)分别测得小汽轮机进汽的压力p进汽、温度t进汽,利用IFC?97工业用水和水蒸气热力性质模型计算得到小汽轮机(3)的进汽焓h进汽;

步骤6:利用热井凝结水压力变送器(11)和热井凝结水温度测量元件(13)分别测得热井凝结水的压力p热井、温度t热井,利用IFC?97工业用水和水蒸气热力性质模型计算得到热井凝结水焓h热井;

步骤7:利用凝汽器循环水进水压力变送器(9)、凝汽器循环水出水压力变送器(6)、凝汽器循环水进水温度测量元件(10)和凝汽器循环水出水温度测量元件(7)分别测得凝汽器循环水进水压力Pin、出水压力Pout、进水温度tw1和出水温度tw2,利用IFC?97工业用水和水蒸气热力性质模型计算得到凝汽器循环水的定压比热容cp;

步骤8:利用凝汽器循环水孔板流量计(8)测出凝汽器循环水进水流量差压Dp循,根据孔板资料计算出循环水质量流量Q循;

步骤9:根据质量守恒原理,小汽轮机排汽流量Q排汽=热井凝结水流量Q热井=小汽轮机进汽流量Q进汽?小汽轮机蒸汽泄漏量Q泄,小汽轮机蒸汽泄漏量Q泄可忽略不计,设小汽轮机排汽焓为h排汽,则汽动引风机效率根据能量守恒原理得到

Q排汽×(h排汽?h热井)=cp×Q循×(tw2?tw1)

求得小汽轮机排汽焓

汽动引风机轴功率P轴=Q进汽×(h进汽?h排汽)。

说明书: 一种独立凝汽式汽动引风机效率的测定方法技术领域[0001] 本发明属于电站锅炉及汽轮机系统领域,具体涉及一种独立凝汽式汽动引风机效率的测定方法。背景技术[0002] 电站锅炉引风机是锅炉最重要的辅机之一,大型电站锅炉普遍采用轴流式引风机,随着锅炉容量的不断增加及引风机、增压风机合并为引风机这一节能措施的推行,使得锅炉引风机的尺寸不断增加,其占厂用电率的比例也进一步提高,同时对电站锅炉引风机运行的安全可靠性和经济性的要求也越来越高。我国自行开发的和从国外引进的电站锅炉风机技术产品不断涌现。但要在制造厂内进行全尺寸试验,其需要的经费太大而几乎不可能,因此,在现场实际系统中考核引风机的性能更为必要和重要。[0003] 引风机驱动方式主要有电动机驱动和小汽轮机驱动两大类。相比于单一电动机驱动方式,汽动引风机具有厂用电率低、可实现锅炉引风机变转速调节等优点。为降低厂用电率,增大上网供电量,越来越多的机组采用小汽轮机驱动引风机方式。DL/T469?2004给出了电动引风机效率的测量方法,引风机轴功率可以通过测量电动机的输出功率求得。然而独立凝汽式汽动引风机的效率测量还是一片空白,由于小汽轮机的输出功率无法直接准确测量,这在一定程度上影响到引风机效率的计算精度和汽动引风机的经济性安全性评价。发明内容[0004] 本发明的目的在于提供一种独立凝汽式汽动引风机效率的测定方法,该方法测量的参数非常少,测量成本低,测量误差对结果造成影响较小。[0005] 本发明采用如下技术方案来实现的:[0006] 一种独立凝汽式汽动引风机效率的测定方法,该方法基于的系统包括凝汽器,以及同轴设置的小汽轮机和汽动引风机;小汽轮机的进汽口管道上设置有小汽轮机进汽压力变送器、小汽轮机进汽温度测量元件,小汽轮机的排汽口连通至凝汽器的进汽口,且小汽轮机的排汽口管道上设置有小汽轮机排汽绝对压力变送器;凝汽器的循环水出口管道上设置有凝汽器循环水出水压力变送器和凝汽器循环水出水温度测量元件,凝汽器的循环水进口管道上设置有凝汽器循环水进水孔板流量计、凝汽器循环水进水压力变送器和凝汽器循环水进水温度测量元件,凝汽器的凝结水出口管道上设置有热井凝结水压力变送器、热井凝结水孔板流量计和热井凝结水温度测量元件,汽动引风机的进口管道上设置有汽动引风机进口气体动压测量装置、汽动引风机进口气体静压测量装置和汽动引风机进口气体温度测量元件,汽动引风机的出口管道上设置有汽动引风机出口气体静压测量装置和汽动引风机出口气体温度测量元件,汽动引风机处设置大气压力表计;[0007] 该方法包括以下步骤:[0008] 步骤1:利用汽动引风机进口气体动压测量装置测得流量测量截面内各个网点上的时间平均动压pdi;[0009] 步骤2:利用汽动引风机进口气体温度测量元件、汽动引风机进口气体静压测量装置、大气压力表计,分别测得汽动引风机进口气体温度t1、汽动引风机进口流量测量截面处的静压pst1、汽动引风机所处环境的大气压力pa;[0010] 步骤3:利用汽动引风机出口气体温度测量元件、汽动引风机出口气体静压测量装置,分别测得汽动引风机出口流量测量截面处气体温度t2、汽动引风机出口气体静压pst2;[0011] 步骤4:利用热井凝结水孔板流量计测得热井凝结水流量差压Dp热井,根据孔板流量计的设计资料,计算出热井凝结水流量Q热井;[0012] 步骤5:利用小汽轮机进汽压力变送器、小汽轮机进汽温度测量元件分别测得小汽轮机进汽的压力p进汽、温度t进汽,利用IFC?97工业用水和水蒸气热力性质模型计算得到小汽轮机的进汽焓h进汽;[0013] 步骤6:利用热井凝结水压力变送器和热井凝结水温度测量元件分别测得热井凝结水的压力p热井、温度t热井,利用IFC?97工业用水和水蒸气热力性质模型计算得到热井凝结水焓h热井;[0014] 步骤7:利用凝汽器循环水进水压力变送器、凝汽器循环水出水压力变送器、凝汽器循环水进水温度测量元件和凝汽器循环水出水温度测量元件分别测得凝汽器循环水进水压力Pin、出水压力Pout、进水温度tw1和出水温度tw2,利用IFC?97工业用水和水蒸气热力性质模型计算得到凝汽器循环水的定压比热容cp;[0015] 步骤8:利用凝汽器循环水孔板流量计测出凝汽器循环水进水流量差压Dp循,根据孔板资料计算出循环水质量流量Q循;[0016] 步骤9:根据质量守恒原理,小汽轮机排汽流量Q排汽=热井凝结水流量Q热井=小汽轮机进汽流量Q进汽?小汽轮机蒸汽泄漏量Q泄,小汽轮机蒸汽泄漏量Q泄可忽略不计,设小汽轮机排汽焓为h排汽,则汽动引风机效率[0017] 本发明进一步的改进在于,步骤1中,根据式(1)计算该截面的平均动压pd;[0018][0019] 其中n为测点数。[0020] 本发明进一步的改进在于,步骤2中,根据式(2)计算进口流量测量截面处介质密度ρ1,根据公式(3)计算引风机进口流量测量截面处的全压p1,根据公式(4)计算进口流量测量截面处的流量qv1,[0021][0022] p1=pst1+pd(3)[0023][0024] 其中A1为引风机进口流量测量截面处面积,m2。[0025] 本发明进一步的改进在于,步骤3中,根据公式(5)计算出引风机出口气体密度ρ2,根据公式(6)计算出引风机出口气体动压pd2,根据公式(7)计算出引风机出口全压p2,根据公式(8)计算出引风机进出口气体平均密度ρ,根据公式(9)计算引风机全压p,根据公式(10)计算出汽动引风机有效功率Pe;[0026][0027][0028] p2=pst2+pd2(7)[0029][0030] p=p2?p1(9)[0031][0032] 其中A2为引风机出口截面积,m2。[0033] 本发明进一步的改进在于,步骤9中,根据能量守恒原理得到[0034] Q排汽×(h排汽?h热井)=cp×Q循×(tw2?tw1)[0035] 求得小汽轮机排汽焓[0036] 汽动引风机轴功率P轴=Q进汽×(h进汽?h排汽)。[0037] 与现有技术相比,本发明的有益效果在于:[0038] 本发明一种独立凝汽式汽动引风机效率的测定方法,该方法是把汽动引风机、小汽轮机和凝汽器作为一个整体研究,基于热力学方法计算小汽轮机排汽焓,从而计算汽动引风机轴功率,最终求得汽动引风机效率。所需要测量的参数少,测量成本低,测量误差对结果造成的影响较小,仅需测量:汽动引风机进口气体的动压、静压、温度,汽动引风机出口气体的静压、温度,小汽轮机进汽压力、温度,凝汽器循环水进水压力、温度、流量,凝汽器循环水出水压力、温度,热井凝结水温度、压力、流量。从而全面了解独立凝汽式汽动引风机的性能,为指导汽动引风机的经济、安全运行提供可靠的依据,为今后经济运行提出合理建议和改进方向。附图说明[0039] 图1是本发明一种独立凝汽式汽动引风机效率的测定方法示意图。[0040] 附图标记说明:1、小汽轮机进汽压力变送器,2、小汽轮机进汽温度测量元件,3、小汽轮机,4、小汽轮机排汽绝对压力变送器,5、凝汽器,6、凝汽器循环水出水压力变送器,7、凝汽器循环水出水温度测量元件,8、凝汽器循环水进水孔板流量计,9、凝汽器循环水进水压力变送器,10、凝汽器循环水进水温度测量元件,11、热井凝结水压力变送器,12、热井凝结水孔板流量计,13、热井凝结水温度测量元件,14、汽动引风机进口气体动压测量装置,15、汽动引风机进口气体静压测量装置,16、汽动引风机进口气体温度测量元件,17、汽动引风机,18、汽动引风机出口气体静压测量装置,19、汽动引风机出口气体温度测量元件,20、大气压力表计。

具体实施方式[0041] 下面结合附图对本发明的优选实施示例进行说明,应当理解,此处所描述的优选实施示例仅用于说明和解释本发明,并不用于限定本发明。[0042] 实施示例1[0043] 如图1所示,本发明一种独立凝汽式汽动引风机效率的测定方法,该方法基于的系统包括凝汽器5,以及同轴设置的小汽轮机3和汽动引风机17;小汽轮机3的进汽口管道上设置有小汽轮机进汽压力变送器1、小汽轮机进汽温度测量元件2,小汽轮机3的排汽口连通至凝汽器5的进汽口,且小汽轮机3的排汽口管道上设置有小汽轮机排汽绝对压力变送器4;凝汽器5的循环水出口管道上设置有凝汽器循环水出水压力变送器6和凝汽器循环水出水温度测量元件7,凝汽器5的循环水进口管道上设置有凝汽器循环水进水孔板流量计8、凝汽器循环水进水压力变送器9和凝汽器循环水进水温度测量元件10,凝汽器5的凝结水出口管道上设置有热井凝结水压力变送器11、热井凝结水孔板流量计12和热井凝结水温度测量元件13,汽动引风机17的进口管道上设置有汽动引风机进口气体动压测量装置14、汽动引风机进口气体静压测量装置15和汽动引风机进口气体温度测量元件16,汽动引风机17的出口管道上设置有汽动引风机出口气体静压测量装置18和汽动引风机出口气体温度测量元件19,汽动引风机处设置大气压力表计20。

[0044] 该方法包括以下步骤:[0045] 步骤1:利用汽动引风机进口气体动压测量装置14测得流量测量截面内各个网点上的时间平均动压pdi(Pa),根据式(1)计算该截面的平均动压pd(Pa);[0046][0047] 其中n为测点数。[0048] 步骤2:利用汽动引风机进口气体温度测量元件16、汽动引风机进口气体静压测量装置15、大气压力表计20,分别测得汽动引风机进口气体温度t1(℃)、汽动引风机进口流量测量截面处的静压pst1(Pa)、汽动引风机所处环境的大气压力pa(Pa),根据式(2)计算进口3

流量测量截面处介质密度ρ1(kg/m),根据公式(3)计算引风机进口流量测量截面处的全压

3

p1(Pa),根据公式(4)计算进口流量测量截面处的流量qv1(m/s),

[0049][0050] p1=pst1+pd(3)[0051][0052] 其中A1为引风机进口流量测量截面处面积,m2。[0053] 步骤3:利用汽动引风机出口气体温度测量元件19、汽动引风机出口气体静压测量装置18,分别测得汽动引风机出口流量测量截面处气体温度t2(℃)、汽动引风机出口气体静压pst2(Pa)、以及步骤3中计算得到的引风机进口气体流量qv1,根据公式(5)计算出引风机3

出口气体密度ρ2(kg/m),根据公式(6)计算出引风机出口气体动压pd2(Pa),根据公式(7)计

3

算出引风机出口全压p2(Pa),根据公式(8)计算出引风机进出口气体平均密度ρ(kg/m),根据公式(9)计算引风机全压p(Pa),根据公式(10)计算出汽动引风机有效功率Pe(kW),[0054]

[0055][0056] p2=pst2+pd2(7)[0057][0058] p=p2?p1(9)[0059][0060] 其中A2为引风机出口截面积,m2。[0061] 步骤4:利用热井凝结水孔板流量计12测得热井凝结水流量差压Dp热井(Pa),根据孔板流量计的设计资料,计算出热井凝结水流量Q热井(kg/h);[0062] 步骤5:利用小汽轮机进汽压力变送器1、小汽轮机进汽温度测量元件2分别测得小汽轮机进汽的压力p进汽(Pa)、温度t进汽(℃),利用IFC?97工业用水和水蒸气热力性质模型计算得到小汽轮机3的进汽焓h进汽(kJ/kg);[0063] 步骤6:利用热井凝结水压力变送器11和热井凝结水温度测量元件13分别测得热井凝结水的压力p热井(Pa)、温度t热井(℃),利用IFC?97工业用水和水蒸气热力性质模型计算得到热井凝结水焓h热井(kJ/kg);[0064] 步骤7:利用凝汽器循环水进水压力变送器9、凝汽器循环水出水压力变送器6、凝汽器循环水进水温度测量元件10和凝汽器循环水出水温度测量元件7分别测得凝汽器循环水进水压力Pin(Pa)、出水压力Pout(Pa)、进水温度tw1(℃)和出水温度tw2(℃),利用IFC?97工业用水和水蒸气热力性质模型计算得到凝汽器循环水的定压比热容cp(kJ/(kg·℃));[0065] 步骤8:利用凝汽器循环水孔板流量计8测出凝汽器循环水进水流量差压Dp循(Pa),根据孔板资料计算出循环水质量流量Q循(kg/h);[0066] 步骤9:根据质量守恒原理,小汽轮机排汽流量Q排汽=热井凝结水流量Q热井=小汽轮机进汽流量Q进汽?小汽轮机蒸汽泄漏量Q泄,小汽轮机蒸汽泄漏量Q泄可忽略不计,设小汽轮机排汽焓为h排汽(kJ/kg),根据能量守恒原理得到[0067] Q排汽×(h排汽?h热井)=cp×Q循×(tw2?tw1)[0068] 求得小汽轮机排汽焓[0069] 汽动引风机轴功率P轴=Q进汽×(h进汽?h排汽)[0070] 汽动引风机效率[0071] 本发明是把汽动引风机、小汽轮机和凝汽器作为一个整体研究,基于热力学方法计算汽动引风机的轴功率,进而求得汽动引风机效率。所需要测量的参数少,测量成本低,测量误差对结果造成的影响较小,仅需测量:汽动引风机进口流量、压力、温度,汽动引风机出口压力、温度,小汽轮机进汽压力、温度,凝汽器循环水进水压力、温度、流量,凝汽器循环水出水压力、温度,热井凝结水温度、压力、流量。从而全面了解独立凝汽式汽动引风机的性能,为指导汽动引风机的经济、安全运行提供可靠的依据,为今后经济运行提出合理建议和改进方向。



声明:
“独立凝汽式汽动引风机效率的测定方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第五届中国浮选大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记