本发明提供了一种多组元含能合金材料制备工艺及多组元含能合金材料,包括以下步骤:(1)将钨粉、锆粉、钛粉、镍粉和铝粉混合,加入有机溶剂,搅拌后球磨,钨粉、锆粉、钛粉、镍粉和铝粉按照重量百分数的配比为:钨粉40%~60%,锆粉10%~20%,镍粉8%~10%,铝粉1%~5%;(2)将上述混合粉末放入真空干燥箱中脱去有机溶剂,使用滤网进行过筛;(3)将过筛后的混合粉末导入压药模具,预压成型,得到含能材料压坯;(4)将含能材料压坯静置;(5)将静置后的含能材料压坯放入真空烧结炉中,进行烧结,制得多组元含能合金材料。通过本发明的技术方案,简化了制备工艺,提高了制备效率,而且制备出来的含能合金材料综合性能高。
本发明公开了一种混杂增强粉末冶金钛基复合材料及其制备方法;其制备步骤如下:将TiH2粉末与B4C粉末均匀混合;通过油压机冷压成形为生坯;再放入真空烧结炉中完成脱氢与烧结;包套密封后通过热挤压工艺完成进一步致密化,最终得到一种高性能Ti/(TiB+TiC)钛基复合材料。所述方法制备的钛基复合材料选用低成本的TiH2作为原料,能大幅度降低钛基复合材料的制备成本;复合材料组织由等轴晶α钛基体以及均匀分布的纤维状的TiB和颗粒状的TiC两种增强相组成,具有高达99.9%的致密度,以及优异的强塑性匹配,室温屈服强度为537~683MPa,抗拉强度为653~851MPa,断后伸长率为15~34%。
本发明涉及一种陶瓷基复材产品装配后局部不均匀微小缝隙的填充方法,以解决现有技术中存在的局部不均匀微小缝隙影响产品各项性能的问题。该方法包括以下步骤:1)对产品表面进行打磨抛光并清洗烘干;2)使用填充粉填充产品装配后局部不均匀微小缝隙,填充粉包括硅硼玻璃粉;3)取环氧树脂胶和稀释剂,按质量比10:2~5进行混合,并搅拌至均匀无气泡,得到胶液;4)使用胶液对填充后的缝隙进行封灌;5)对封灌后的产品进行烘干固化,固化温度为150~180℃,时间为0.5~1小时;6)对烘干固化后的产品进行高温真空烧结,烧结温度为950~1200℃,时间为7~9小时,保温5~6小时后自然降温,保温及降温过程采用惰性气体保护,待温度降至室温后将产品取出,填充完成。
本发明涉及人造金刚石合成领域,具体地说是涉及一种安全节能人造金刚石合成用石墨柱制作方法,其特征在于:该方法为:将按照4:6比例混合好的触媒粉与石墨粉造粒,把造粒后的颗粒按石墨柱重量要求称重,把称重后的颗粒料装入石墨模具内,把装好的石墨模具放入真空烧结压机的中间位置,关闭炉门,这样的一种安全节能人造金刚石合成用石墨柱制作方法具有在石墨柱制作过程中,将压制,还原两道工序合成一道工序,操作方便,减少了运行成本和材料损耗,达到了安全节能的目的。
本发明公开了烧结钕铁硼磁性材料的生产工艺,涉及到烧结钕铁硼磁性材料生产工艺领域,包括以下步骤:S1:原材料分析,S2:配方,S3:制备成型,S4:真空烧结,S5:精加工,S6:电镀,S7:成品入库;Nd有顺磁性,可增加制备的钕铁硼磁性材料中的磁性,且Nd用量取现有技术中的18%~33%中间值,既保证了钕铁硼磁性材料具有足够的磁性,又能达到Nd用量不会过多而因Nd容易氧化的特性使得整体的钕铁硼磁性材料较脆的弊端。
本发明公开了一种采用钇/助剂/铝三重核壳结构粉体制备YAG透明陶瓷的方法,具体步骤是:先采用共沉淀法制备铝前驱体,再采用共沉淀法在铝前驱体表面包覆烧结助剂,形成助剂/铝核壳结构,再采用共沉淀法在助剂/铝核壳结构表面包覆钇前驱体,得到含有钇/助剂/铝三重核壳结构前驱体溶液,经干燥、过筛、煅烧后得到陶瓷粉体,再经过压制成型,真空烧结,退火,抛光处理,得到YAG透明陶瓷。本发明制备的YAG透明陶瓷致密化程度高,无晶间相存在,其在1064nm处的透过率达到83.2%‑84.6%,陶瓷具有较好的光学质量。
本发明公开了一种高球形度的碳化硅颗粒的制备方法。本发明的一种高球形度的碳化硅颗粒的制备方法,包括如下步骤:1)将碳化硅粉末和氮化硅粉末按质量比1:0.6~1.5混合;2)将步骤1)将所述混合粉末清洗后干燥;3)将步骤2)处理所得混合粉末装入石墨匣钵,盖上石墨基片,进行真空烧结,得碳化硅颗粒。本发明的方法采用的原料简单易得,有利于降低成本,涉及的处理步骤简便,操作性强,处理的碳化硅颗粒球形度高、尺寸均一、表面光滑且无杂质,且在得到的碳化硅颗粒的同时也在石墨基板上沉积了碳化硅薄膜,有利于节能降耗。
本发明公开了一种采用真空自耗电弧熔炼CuFe合金材料的制备方法,包括以下步骤:(1)原材料的混合:该材料组成及其重量百分比为:Cu70%‑30%,Fe30%‑70%,按照比例称取所需原料,在混料机内进行混合,混料时间为2‑4h;(2)压制:将混合的混合粉装入胶套内先进行机械震动30‑60s,然后擀料3‑6min,再反向墩料3‑5次,将处理好的混合粉采用冷等静压法进行压制,压力为150~300MPa,保压时间为3‑10min;(3)烧结:将压制好的自耗电极装入真空烧结炉内进行烧结,烧结最高温度控制在800℃‑1080℃,保温时间30‑240min,真空度>5pa;(4)熔炼:将烧结后的自耗电极装入真空自耗电弧熔炼炉内进行熔炼,熔炼电流为1000‑4000A。本发明气体含量低、夹杂物少、并且组织成分均匀,无Cu、Fe富集等宏观、微观缺陷。
本发明提供一种带有仿生结构金属陶瓷耐磨件的复合耐磨铸件的制备,属于金属陶瓷复合材料耐磨件技术领域。通过三维结构图形绘制方法能够得到最合理的二次仿生结构金属陶瓷复合材料耐磨件的三维结构图形,然后通过3D打印切片软件打印制作仿生结构金属陶瓷复合材料耐磨件的PLA模型,硅胶翻模制作压制包套,将所需金属陶瓷颗粒和粘结剂混合填充压制包套做成生坯,再将生坯经过真空烧结得到仿生结构金属陶瓷复合材料耐磨件,将刚出炉的高硬度合金熔液浇铸在耐磨块上以形成带有仿生结构金属陶瓷耐磨件的复合耐磨铸件,确保了复合耐磨铸件耐磨性和韧性的正相关关系,陶瓷颗粒也不需要进行表面改性处理,简单易操作,利于工业大规模生产和推广使用。
本发明涉及一种由三氧化二钛制备多孔钛的方法,属于多孔钛制备技术领域。本发明将三氧化二钛粉末与氯化钙混合均匀得到Ti2O3/CaCl2混合粉;将Ti2O3/CaCl2混合粉压制成型得到预成型体;将预成型体置于真空或氩气氛围、温度为850~1000℃条件下烧结30~120min得到多孔前驱体;在压强为10‑1~10Pa、温度为900~1200℃条件下,采用钙蒸气还原多孔前驱体4~12h;采用稀盐酸溶液浸洗还原产物30~240min,固液分离得到固体A和酸浸液;用去离子水和无水乙醇交替洗涤固体A,然后真空干燥得到片状多孔钛;将片状多孔钛置于温度为1200~1400℃下真空烧结2~4h即得多孔钛。本发明方法制备的多孔钛具有两种孔径分布,分别为孔径50~200µm的大孔和孔径4~15µm的微孔。
本发明涉及一种基于反应烧结法制造超细高韧性碳化硅陶瓷材料的方法,是针对解决现有同类方法制得的碳化硅陶瓷材料颗粒大小和韧性有待进一步提高的技术问题而设计。其要点是在微米颗粒的碳化硅粉中,加入Y2O3-AL2O3-SiO2组分烧结添加助剂、碳粉,经混料机充分搅拌混合,倒入预先溶解了液体石蜡的甲醇溶液中,再经混合球磨,制得泥浆;泥浆搅拌后在注塑成型机上注塑成型,成型后在阴凉处自然硬化;干燥后成型的素坯在真空预烧炉中进行素烧,并脱去粘接剂,得到达到中等强度的素坯,再次将素坯用机械方法加工成毛坯;毛坯放入真空烧结炉中氩气保护烧结,制成亚微米级超细高韧性的碳化硅陶瓷材料。
本发明公开了一种对称型高功率密度的超级电容器的制备方法,包括以下步骤:首先制备二硫化钼层状纳米材料;然后采用溶剂热法制备MoS2/RuO2纳米复合材料,预处理钽片,然后将制得的浆料热压在钽片上,真空烧结,制得电极片;最后将上述制得的电极片、隔膜、电极片层叠放置于电池模型中,注入电解液,组装制得对称型高功率密度的超级电容器。本发明制得的超级电容器稳定性好,充放电效率高,循环使用寿命久,绿色环保。
本发明提供了一种摩擦制动材料的制备方法,先取脂肪酸锌,加热至150~170℃,加入重晶石粉,搅拌,冷却后加入聚氯乙烯、甘油、大豆卵磷脂,乙撑双硬脂酰胺,升温混合,冷却至室温,得到混合物A;再取聚酰胺改性酚醛树脂、聚甲基丙烯酸铵、环氧树脂、硅灰石、六太酸钾晶须、聚酰胺蜡,升温混合,冷却,得到混合物B;然后将混合物A、混合物B进行混合,烘干、球磨,得到混合物C;最后将混合物C与石墨、氧化钛、铁粉、镍粉、甲基硅油、聚碳酸酯、硼酸单乙醇胺混合,真空烧结,即得。本发明提供的摩擦制动材料具有良好的摩擦制动性能。
一种高精度过滤用烧结网。本发明的技术方案是,它有以下步骤:(1)将12×64/不锈钢密纹网先进行退火工序,然后再用轧辊进行轧压;(2)将一个12×64/不锈钢密纹网上方再固定一个12×64/不锈钢密纹网,这两个12×64/不锈钢密纹网的纹路呈90度交叉,在其上再固定一个100目方孔网,在100目方孔网上方再放置一个400×2700/不锈钢密纹网,在400×2700/不锈钢密纹网上方再固定一个300目方孔网,在300目方孔网上方在固定一个100目方孔网;(3)将步骤(2)排布固定好的整体网片放入真空烧结炉进行烧制;(4)烧制后对整体网片进行多次辊压,重复烧结。本发明制成的烧结网结构好,使用效果佳,能够满足多种行业对精度较高的过滤需求。
本发明制备的高矫顽力和高耐蚀性烧结钕铁硼永磁材料及制备方法,属于磁性材料技术领域。将平均粒径50-90纳米的M(这里的M代表?Mg、Al、Cu及其混合粉)粉末进行表面改性;再加入2-4微米钕铁硼粉末中混合均匀,加入量为?0.1-2.0wt%?;在?2.5T的磁场中取向并压制成型,再经20-40MPa冷静压后,置入真空烧结炉内;然后升温,在200-300℃,800-900℃分别停留1-2小时和2-3小时,在1020-1120℃?烧结2-6小时,最后进行二级热处理,一级热处理温度900-950℃,时间2-3.5小时;二级热处理温度480-630℃,时间1-3小时,获得烧结钕铁硼永磁材料。本发明纳米粉及其混合粉的加入,使得烧结钕铁硼基永磁材料的矫顽力和耐蚀性得到了提高。
本发明涉及一种金属陶瓷微细铣刀的制造方法及铣刀,涉及机械刀具及材料成型相关技术领域。本方法和技术制造出的陶瓷微细铣刀适用于高速微细铝合金、钛合金、不锈钢和模具钢,铣削效率和零件表面质量比硬质合金刀具提高1.5~2.0倍,且成本低,设备及工艺简单,易于产业化,填补了微细铣刀领域的空白。制造方法部分主要包括如下步骤:(1)将陶瓷复合粉体各组分称重,混合,真空干燥,冷压成饼坯;(2)在热压真空烧结炉中进行烧结制备,获得大块棒坯;(3)采用线切割方法制出小尺寸棒材;(4)在超精密工具磨床上,采用金刚石砂轮对棒材的工作部进行开刃和修磨,实现铣刀的主切削刃、副切削刃、螺旋槽、前角和后角成型。
一种颗粒增强钛基复合材料的粉末冶金方法,涉及一种粉末冶金方法,特别是含有颗粒增强相的粉末冶金钛基复合材料的粉末冶金方法。其特征在于在采用粉末冶金钛合时,在配制的粉末中加入碳化铬,加入量以C含量计为5Vol%-15Vol%,混料后,经冷等静压成型,经过1200℃~1300℃、1~6h真空烧结制得含颗粒增强相TiC粒子钛合金。本发明的粉末钛基复合材料在烧结过程中,钛与碳化铬发生原位合成反应,生成TiC颗粒增强相,由于第二相粒子的出现,细化了合金晶粒,阻碍了合金中裂纹的扩展,从而提高了合金的性能。
本发明公开了一种笔记型电脑CPU连接器开关装置材料及其制造方法,将上述粘接剂同不锈钢微米粉末加热到130-150℃,混合2小时,均匀后形成注射喂料;将注射喂料加入到注射成型机内在120-140℃在模具中注射成型生坯;将生坯放入溶剂中脱出45%-55%的粘接剂,再放入真空烧结炉于1300-1340℃烧结致密化,达到7.65克/立方厘米以上的密度;将不锈钢开关装置放入加热炉中,在440-480℃温度下进行时效处理2-4小时;再进行盐浴氮化处理。通过本发明设计而成的开关装置,成品率高,硬度高。很好的满足了新一代开关装置的高强度、高耐磨性的要求,并且调整粘接剂后,成型的合格率大幅度提高。
本发明涉及一种玻璃式触摸屏银线烧结工艺,将银线印刷完毕的玻璃放入烘箱内,135℃烘烤15分钟;将烘烤完毕的玻璃从烘箱中取出,放入真空烧结炉内,玻璃与玻璃之间的距离应大于5厘米;将炉内的真空抽至3Pa以下后,再以10℃/分钟的速度,将炉温升至250℃;以5℃/分钟的速度,将炉温升至325℃,烧结10分钟;以3℃/分钟的速度,将炉温升至520℃,烧结8分钟;以10℃/分钟的速度,将炉温降至300℃,再以20℃/分钟的速度,将炉温降至室温;给炉内充气至外部气压,打开炉门,取出玻璃;本发明所述工艺的优点是:在国内首次发明提供一种的玻璃式触摸屏银线烧结工艺;解决了银线在玻璃上附着力的问题;操作方法简单、快速、节能。
本发明公开了一种快堆嬗变燃料(U, Np)O2芯块和靶件的制备工艺。该工艺包括UO2粉末的还原、球磨、UO2粉末的单独造粒处理、已造粒UO2粉末与未造粒NpO2粉末两步法均匀混合、芯块压制及高温烧结、芯块装管、管口α去污、靶件焊接、靶件去污、无损检验等步骤。粉末混合时,第一步先将全部NpO2与部分UO2均匀混合,比例是1 : (1~4);第二步将剩余UO2粉末与第一步混合粉末进行均匀混合。芯块在压力300~350MPa压制成型后,先在1700~1750℃、<10Pa真空烧结2~4h,待降温至1000℃时再通入5%H2-Ar2混合气氛保温2小时,可制得相对密度为95±1%、O/U比1.96~1.99、晶粒尺寸10~20μm、Np分布均匀的(U0.95Np0.05)O2嬗变燃料芯块。将芯块装入316Ti不锈钢包壳管内,采用TIG焊接方法制成快堆嬗变燃料靶件。
本发明公开了一种陶瓷LED灯用陶瓷烧结方法,采用原料的质量份包括:氧化铝粉30~58、滑石2~9、四氧化三铅12~32、碳化硅粉15~28、氧化钼1~7、氧化锌21~40、五氧化二铌1~5、二硼化锆8~17、二硼化钛8~15;将上述原料球磨混合1~2小时后,以300~500℃每小时的速率升温,1200℃保温0.5~1.5小时后,以500~600℃每小时的速率降温至800℃,同时在压强350~500MPa下保温1~2小时,再以100~200℃每小时的速率升温至1300~1500℃,真空烧结4~7小时。本发明可以缩短预烧和烧结时间,降低烧结温度,降低能耗,陶瓷材料断裂韧性得到有效提高,被烧结出的陶瓷材质整体均衡,大大减少废品,提高产品的质量。
本发明属于光电材料新能源技术领域,特别涉及一种制备铜铟硒溅射靶材的工艺。通过制备或市场购买Cu2Se粉末和In2Se3粉末,混合后在行星式球磨机中球磨,而后冷压成型,制得Cu2Se和In2Se3混合材料素坯,将此素坯置于密闭的真空烧结炉中,在H2保护气氛中,烧结,冷却后脱模,即得到铜铟硒靶材。所制得的靶材具有均一的铜铟硒相,相对密度达到95%以上。本发明具有工艺简便,效率高,成本低,稳定性好等优点,为制备铜铟硒吸收层薄膜的制备工艺提供了便捷和稳定的保证。
本发明是一种长效光数据存储介质合金材料及制备方法。合金材料由如下组份组成:铜70%~80%,硅5%~12%,抗腐蚀性材料2%~20%,高敏感度材料2%~10%。该合金材料主要用于制作蓝光存储光盘中数据记录介质膜层。本发明制备方法是将铜、硅、抗腐蚀性材料以及高敏感度材料的粉末充分混合填充于模具进行压缩成型,在真空烧结炉里烧结后进行缎造压延,最后进行机械加工得到所需要的适合真空磁控溅镀的靶标形状。本发明合金材料成本低、稳定性好、容易实现;且在数据存储蓝光光盘的记录层,提高记录层感光性能,降低光盘片的刻录功率和提高数据的稳定性能;本发明合金材料生产的蓝光光盘寿命是市场上普通铜及非晶质硅记录膜层蓝光光盘寿命的1.5倍以上。
一种掺锆铽铝石榴石磁旋光透明陶瓷,该透明陶瓷组成为xZrO2‑Tb3Al5O12,其中ZrO2的掺杂量占Tb3Al5O12重量的百分比的变化范围为x=0.01wt%~0.5wt%。采用七氧化四铽或三氧化二铽、氧化铝、二氧化锆粉体为原料,正硅酸四乙酯或二氧化硅、氧化镁或乙醇镁为烧结助剂,经湿法球磨、烘干、过筛、压片和冷等静压后,预烧去除有机成分,真空烧结得到高光学质量的透明陶瓷。本发明制备的掺锆铽铝石榴石磁旋光透明陶瓷在可见‑红外波段具有高透过率和高磁光性能,并且具有制备工艺简单,生产周期短,无需气氛辅助和压力烧结,经济节能等优点。
本发明公开了一种采用滚制成型工艺规模化生产氧化铍陶瓷球的方法。该方法包括下述步骤:(1)称量高纯纳米氧化铍陶瓷粉体和去离子水,经过球磨混合后得到固含量为55%‑66%的氧化铍陶瓷料浆;(2)氧化铍陶瓷料浆进行喷雾干燥,得到平均粒径为0.1‑0.15mm的氧化铍陶瓷颗粒;(3)氧化铍陶瓷颗粒种子缓慢加入造球机中,在造球机转动的过程中,一边在种子上洒纳米氧化铍粉末,一边以喷雾的方式喷入去离子水,持续滚制成型,直至得到平均直径为1.2‑3.3mm氧化铍陶瓷球坯体;(4)置于室温下干燥至含水率为2%‑3%;(5)将坯体高温真空烧结;所述烧结温度为1650‑1750℃,保温时间3‑5h,即得。
本发明公开了一种硬质合金顶锤脱蜡烧结方法,依次包括以下步骤:450摄氏度以前进行氢脱蜡,在450至600摄氏度之间充入氩气进行负压脱蜡,然后从600升温至1250摄氏度进行真空烧结,再充入氩气从1250摄氏度到1415摄氏度进行加压烧结,最后保温60分钟再冷却至室温。本发明的优点是:使用正压氢气脱蜡与负压氩气脱蜡相配合的脱蜡方式,排蜡过程由原先的5天降低至2天以内,并且烧结过程中烧结炉内加以氩气,保证产品内无空隙缺陷,提高产品强度。
本发明公开了一种采用真空自耗电弧熔炼铜钛系列合金材料的制备方法,涉及铜钛合金制备技术领域,包括S1、原材料配比:材料组成及其质量百分比为:铜粉0.5‑99.5%,海绵钛99.5‑0.5%;S2、原材料混合:按照比例称取所需原料,在混料机进行混合;S3、压制:将混合料装入模具内墩粉,将墩好粉的模具放入冷等静压机进行压坯;S4、烧结:将压制好的坯体装入真空烧结炉中进行烧结;S5、熔炼:将烧结后的坯体作为自耗电极装入真空自耗电弧熔炼炉内进行熔炼,本发明制备出的合金材料具有气体含量低,夹杂少,组织均匀,无铜、钛富集等微观缺陷。
本发明公开了一种低羟基高纯石英棒材/管材的制备方法,包括:S1.将石英粉配置成浆料,加入成型剂,抽真空搅拌;S2.将浆料加压注入不锈钢模具中,浇注的同时增加震动,静置;S3.将不锈钢模具置于60‑100℃的条件下保温4‑8小时,脱模得坯料;S4.将坯料自然干燥12‑24小时,然后加热干燥24‑48小时;S5.将坯料于真空烧结炉中进行玻璃化处理,得石英棒/管坯料;S6.在石英棒/管坯料的两端分别焊接石英手柄和尾柄,将石英手柄悬挂在中频炉顶部,底部由石英尾柄支撑;S7.加热使坯料底部开始逐步软化形变,调整拉制的直径,得到低羟基高纯石英棒材/管材。本发明的低羟基高纯石英棒材/管材的制备方法,解决了杂质的引入,气泡、气线和条纹产生等问题。
本发明公开了一种钴铁氧体/多孔碳复合电磁波吸收材料的制备方法,具体为:将生物遗态材料切割成块状,放入真空烧结炉中烧结,得到多孔碳,对多孔碳进行预处理,再将预处理的多孔碳浸渍于钴铁混合浸渍液中,超声处理,干燥,得到混合物,最后将混合物转移到热水反应釜中进行水热反应,干燥,得到钴铁氧体/多孔碳复合材料。本发明方法制备出的钴铁氧体/多孔碳复合电磁波吸收材料具有多孔结构,且电磁吸收能力强;与传统磁波吸收材料制备工艺相比,原材料来源广泛、成本低、工艺简单环保。
本发明公开了一种致密的纳米增韧碳化硅复相陶瓷的制备方法,所述方法包括如下步骤:步骤一、以α‑SiC粒子为原料,纳米β‑SiC粒子为增韧相,添加烧结助剂和粘结剂,配好原料后投入到氧化铝质球磨罐中,加入蒸馏水,投入研磨球进行研磨,获得组分均匀分散的浆料;步骤二、采用喷雾造粒工艺进行造粒;步骤三、将造粒粉干压成型,得到素坯;步骤四、将素坯放置于真空烧结炉中进行常压烧结,得到致密的纳米增韧碳化硅复相陶瓷。本发明解决了陶瓷的脆性问题,提高了强度和韧性,且操作简单,安全可靠,成本低廉,具有良好的推广应用前景。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!