本发明涉及一种回收稀贵熔炼炉渣中有价金属的方法,其特征在于其回收过程的步骤包括:(1)将熔炼炉渣加入氢氧化钠溶液中进行碱浸;(2)以硫酸为浸出剂,以双氧水为氧化剂,对碱浸渣进行酸浸;(3)将酸浸液加热,再将步骤(1)的碱浸液加入酸浸液中,直至溶液pH为5.0为添加终点,反应后过滤,得到滤渣和为中和液的滤液;(4)中和液加热,加入氢氧化钠,使其pH达到9,将溶液中的镍铜水解为氢氧化物,过滤分离便得到镍铜氢氧化物渣。本发明的一种回收稀贵熔炼炉渣中有价金属的方法,采用全湿法工艺,所用试剂价格便宜,操作方法简单,镍铜回收率高,过程无废水废渣废气排放,处理方法工艺简单,经济实用。
本发明提供了一种环隙式离心萃取器在氯化钴萃取中的应用,依次包括皂化、萃取、补萃取、酸洗涤空甩、反萃取空甩、1级水洗、酸洗和二级水洗在第一箱和第二箱中皂化,萃取级数为2级在第五箱、第六箱中,补萃取级数为2级在第三箱、第四箱中,酸洗涤级数为3级在第七箱、第八箱、第九箱中,空甩级数1级在第十箱中;反萃取级数为3级在第十一箱、第十二箱、第十三箱中,空甩级数1级第十四箱中;1级水洗在第十四箱中,1级酸洗第十五箱中,2级水洗第十六箱中;本发明提高了工艺控制水平,减少了有机投入量,采用氯化钴溶液萃取转型工艺生产四氧化三钴,取代硝酸溶解电钴,操作简便,避免了氮氧化物的产生,过程安全可靠,降低了环境污染。
本发明公开了一种氧化铜洗水和硫酸镍淬余液混合废水的处理方法。本发明将硫酸镍淬余液经除油、中和初步沉淀镍离子,氧化铜洗水经中和初步沉淀铜离子后,将两种废水混合,经过一级反应除砷、镉并脱除部分镍、铜、锌重金属离子,将一级反应出水经压滤后的滤清液进行二级反应,二级硫化反应除去其中的结合态的金属,再经混凝、絮凝、压滤可实现重金属离子达标,滤清液达到《镍铜钴工业污染物排放标准》(GB25467‑2010)特别排放限值要求。本发明能够实现氧化铜洗水和硫酸镍淬余液混合液中污染物的高效分离,反应时间短,药剂成本低,工艺简单,操作性强,易工业化。
一种酸性污水重金属捕捉剂,由以下重量份的原料制成:二甲基二硫代磷酸钠12‑21;二甲基二硫代氨基甲酸钠6‑10;硫代硫酸钠3‑6;磷酸三钠1‑3;亚硝酸钠0.2‑0.5;水59.5‑77.8。本发明制备工艺简单,容易操作,能有效地与pH值为0‑5的酸性污水中的重金属发生化学反应生成不溶于稀酸性溶液的不溶物,几乎能捕捉包括Cu2+、Cd2+、Hg2+、Pb2+、Mn2+、Ni2+、Zn2+、Cr3+、Co3+等各种重金属。沉淀较快,酸性污水经过处理后,固液分离快速、简便。
本发明公开了一种氢氧化镍钴硫酸体系快速浸出的方法,包括以下步骤:将粗氢氧化镍钴用水洗涤后固液分离,将洗涤后的粗氢氧化镍钴用浓硫酸溶解,得到溶解后的反应物料,向溶解后的反应物料中加水稀释再进行固液分离,得到氢氧化镍钴溶解液和低镍钴溶解渣;向氢氧化镍钴溶解液中加入硫磺,向加入硫磺后的氢氧化镍钴溶解液中加入洗涤后的粗氢氧化镍钴,至加入硫磺后的氢氧化镍钴溶解液的pH值为4.0‑4.5,固液分离,得到低钠高镍浸出液和氢氧化镍钴溶解渣。本发明提高了氢氧化镍钴中钴的浸出率,而且不会额外引入钠离子进入浸出;采用浓硫酸溶解氢氧化镍钴可以进一步提高镍的收率,同时硫磺粉的加入可以改变浸出渣的渣型,有利于压滤。
本发明公开了一种含镍固危废物料生产镍块料的方法,包括:对多种镍铜冶炼产生的含镍固危废物料进行粉碎、过筛,得到预设粒径的含镍固危粉碎料;将多种含镍固危粉碎料取样化验分析,基于分析结果得到多种含镍固危粉碎料的配比;按照计算得到的配比,将多种含镍固危废粉碎料和水泥进行配料,得到满足所需指标的含镍固危混合料;将含镍固危混合料送入模具中,生产出镍块料。本发明将多种含镍固危废物料进行混合配料、精准控制金属主品位范围,并搭配凝固剂等生产出一种镍块料,为后续金属冶炼生产创造了有利条件,实现镍、铜、钴及贵金属等有价金属的冶炼回收。
本发明公开一种脱氯剂,包括铅化物和银化物,按质量百分比计,所述脱氯剂中的铅含量≥27.5%,1.3%≥银含量>0%。本申请中的脱氯剂脱氯效率很高,且脱氯过程工序少,操作流程简单,同时本申请中使用的原料价廉易得,极大的降低了脱氯的成本;脱氯剂中加入了少量的银,加了银之后,即便溶液中只有微量的氯离子,也可以被富集在固体中充分得到氧化,即体现了脱氯剂中铅和银对脱氯效果具有协同的作用,进一步提高了脱氯剂的脱氯效果。
一种制备超高纯钴的方法,涉及一种采用湿法冶炼工艺生产高纯钴板材的方法,生产出的高纯钴板材纯度可达到99.9999%以上。其特征是在于用牌号为Co9998的钴通过电溶制备硫酸钴原液,再通过离子交换实现钴溶液的深度净化后,在电积槽内采用电积精炼工艺提炼高纯度钴溶液中的钴金属,使钴在阴极种板上均匀析出成板的方法,其工艺过程为:将硫酸钴原液的浓度调节到80‑90g/L,ph控制到4.5‑5,控制溶液流速为25L‑30L/h将硫酸钴原液通过离子交换树脂711吸附除杂得到高纯度的硫酸钴溶液,再将净化后溶液打到电积槽内,通过电积精炼提纯工艺实现超高纯钴在阴极的析出,槽电压控制为1.1‑1.3V。本发明制备出的高纯钴板内部致密,表面平整,厚度为1‑2mm,经过辉光质谱检测仪检测纯度可达到99.9999%以上。
本发明涉及金属银生产制备技术领域,公开了一种电解银粉除杂方法,适用于银电解精炼过程中去除电解银粉中的Cu,Fe,Bi,Sb等杂质,它包括将电解银粉经质量浓度为18-22g/L的常温稀硝酸溶液浸泡后用60-80℃的热水第一次洗涤30min,再用质量分数为8-10%的常温盐酸溶液浸泡后用60-80℃的热水第二次洗涤30min,再经热风机烘干等步骤,即可有效除去电解银粉中的Cu、Fe、Bi、Sb等杂质,本发明所制备的电解银粉符合GB/T4135-2002国家标准中1#银标准的规定,经过熔铸即可生产出符合规定的银锭。
本发明提供了一种快速判断含镍样品中镍含量的方法,包括以下步骤,首先制配由二胺四乙酸构成的指示剂,向含镍样品溶液中加入指示剂并充分摇晃,观察液体颜色,若液体为亮紫色,则Ni(%)≥22.20%,若液体为亮红色则Ni(%)<22.20%。本发明通过颜色的变化,直观地判断氯化镍产品中的镍含量是否合格,解决了传统滴定中,滴加指示剂繁杂,耗时长,分析效率低的问题。
本发明公开了一种以氧化镍为原料生产电池级硫酸镍的方法,其特征在于,所述方法步骤包括:(1)采用氢离子浓度为8‑12mol/L的硫酸对氧化镍进行预处理,固液分离,采用氢离子浓度为3‑6mol/L的硫酸溶解经固液分离得到固体,将得到的溶液经过滤得到滤液;(2)采用碳酸镍中和经步骤(1)得到的滤液,将得到的混合溶液经蒸发、结晶、干燥得到电池级硫酸镍产品。本发明使氧化镍溶解速率加快一倍左右,无需净化除杂,可以直接进行蒸发结晶生产硫酸镍产品,结晶母液重复利用,节省资源,萃取流程短,成本低。
本发明公开了六氟化铀碱吸收液废液中铀与氟的回收方法,先将六氟化铀碱吸收液废液用酸酸化,调节pH=2.7~5.5,再加入高分子吸附剂聚苯乙烯-环己基氨基马来酸完成UO22+的吸附,固液分离将所得固体用1M以上的酸脱附实现UO22+的回收,剩余溶液加入Na2CO3进行下一循环六氟化铀的淋洗,经循环5次以上时,溶液中富含高浓度的F-。于溶液中加入NaCl至饱和使NaF因溶解度降低析出,过滤回收得NaF固体,溶液中再加入CaCl2,CaO或Ca(OH)2固体或其饱和溶液使残留的F-形成CaF2沉淀,深度除氟。最终实现了六氟化铀气体碱吸收液废液中铀与大量氟的回收。本发明实现了放射性废液中铀的回收及废液的零排放,使废液的排放达到国家标准,同时解决了传统除氟工艺中大量氟化钙难以过滤的问题。
本发明提供了一种电化学处理泥料和渣料中有价金属的装置及方法,利用离心或重力的方使泥料渣料中有价金属成份与电极接触,实现电化学反应的发生,其实现过程特点有通过离心力或重力,实现有价成份与电极的有效接触,在直流电的作用下发生电化学反应,通过上述反应过程,实现泥料渣料中有价金属成份的有效处理。本发明提供了一种电化学处理泥料和渣料中有价金属的装置及方法,实现了泥料渣料中有价成份与电极的有效接触而发生电化学反应,改变了原料中对有价金属化学处理的方式方法,改变了实现有价成份处理的技术条件和控制操作方法,完成了对原料的有效处理,实现了高效、无污染、低成本的生产操作过程。
本发明公开了一种降低尼尔森重选贵金属精矿中氧化镁含量的选矿方法,包括以下步骤:通过球磨机将尼尔森重选贵金属精矿磨至‑0.074mm占60‑75%,磨矿过程中添加硫酸铜且硫酸铜的添加量为80‑100g/t尼尔森重选贵金属精矿;磨矿后在尼尔森重选贵金属精矿中加入浮选药剂,控制浮选浓度为28‑35%,在高转速搅拌条件下对矿浆进行快速浮选,浮选后即可得到氧化镁含量≤6.6%的精矿。本发明对尼尔森重选贵金属精矿进行磨矿和浮选工艺回收有价金属,大大提高了贵金属的回收率,金、铂回收率分别可达97‑99%、91‑99%,可抛除约90%的氧化镁,能将尼尔森重选贵金属精矿中的氧化镁降至6.6%以内。本发明全过程涉及设备少,工艺流程简单,大大降低了处理成本,且现场工业化生产易实施。
本发明涉及一种由镍钴铁高温合金废料中回收镍钴有价金属的方法。本发明首先将镍钴铁高温合金废料做阳极,采用电化学容解的方式进行造液,造液后利用黄钠铁矾法除铁,除铁后将镍钴有价金属共沉积,最终获得高纯镍钴混合盐;通过该法处理的镍钴铁高温合金废料,不但解决了传统湿法方式处理镍钴铁高温镍合金废料难溶解的问题,而且有效的回收了废料中的镍钴有价金属。
本发明提供了一种用于制备高纯度碱性含铜溶液的浸出工艺,本发明舍弃传统酸浸出方式,利用铜始级片、碳酸氢铵和氨水为原料,进行低温低压浸出,得到的含铜溶液纯度高,金属杂质含量符合高纯度含铜溶液的要求,同时,本发明能够在低温、常压下完成,便于操作,缩短了工艺流程,降低了生产成本。
本发明提供一种福美渣的回收利用方法。采用硫化沉淀转化剂与福美渣发生液固相反应,不仅使其中稳定常数相对较小的福美金属盐沉淀转化为相应金属硫化物沉淀而易于后续分离,而且使相应的福美根转化为水溶的福美盐而分离,能够绿色、高效地回收有机成分福美根再利用,有效避免了该有机物对环境造成的危害。本发明优选将反应后经固液分离得到的固体渣经酸洗回收所含金属,尤其是回收其中高附加值的钴,实现了福美渣中的多种有色金属的分离、回收利用。
本发明涉及一种以电积镍为原料生产电镀氯化镍的方法,该方法是指将电积镍投入到盐酸介质中进行溶解,得到氯化镍溶液;然后在所述氯化镍溶液中加入双氧水和镍粉调节溶液的pH值至3.0~4.0,去除氯化镍溶液的杂质后,依次经过滤、蒸发浓缩、结晶,得到晶浆;最后,所述晶浆经固液分离、干燥,即得氯化镍晶体。本发明不但工艺流程短、生产成本低,而且制备的氯化镍纯度高,具有很高的应用价值。
本发明提供了一种提高红土矿浸出液镍离子浓度的浸出方法,包括以下步骤:(1)将红土矿原料加水浆化,控制红土矿浆料液固比为3~4:1;(2)按照酸矿比为0.15~0.20:1将浓硫酸加入红土矿浆料中进行高温浸出,完成浸出后液固分离,得到浸出液和浸出渣;(3)将70~80%的浸出液返回步骤(1)中,并补入新水制备红土矿浆料,剩余20~30%的浸出液作为最终浸出液进入后续净化工序,浸出液如此往复循环。本发明相比现有高压酸浸工艺可将最终浸出液镍离子的浓度从3~5g/L,提高至8~10g/L,镍杂比从2~3:1提高至5~6:1,浸出液体积量缩小2~3倍。由于浸出液镍离子浓度高,镍杂比低,浸出液体积量小,为后续溶液净化工序创造了便利的条件,实现红土矿高效环保的浸出的目的。
本发明属于铀纯化转化技术领域,具体涉及一种大型工业级筛板硝酸铀酰反萃柱的建模方法。输入脉冲筛板反萃柱的参数,分为工艺操作参数与结构参数;建立硝酸铀酰反萃过程的热力学模型,建立脉冲筛板反萃柱水力学模型,将硝酸铀酰反萃过程的热力学模型与脉冲筛板反萃柱水力学模型进行联合,利用荣格库塔法进行求解;在带入脉冲筛板反萃柱的工艺操作参数和结构参数前提条件下,计算出脉冲筛板反萃柱水相与有机相出口硝酸铀酰浓度结果;对计算结果进行校验,对符合要求的输出,得出最终计算结果,对不符合要求的重新返回进行计算。本发明适用于脉冲筛板反萃柱进行天然铀反萃过程中的模拟,该方法准确性高,模拟数据均在实际数据8%的误差范围之内。
一种氯化体系中镍丸溶解液的除铁方法,适用活化镍粉调节溶液的pH值,然后加入过氧化氢,将溶液中Fe2+氧化为Fe3+,Fe3+水解形成Fe(OH)3沉淀,经过压滤机后,得到溶液含铁小于0.0002g/L的镍丸溶解液。本发明方法,实现了镍丸溶解液中深度净化除铁的要求。
本发明涉及铜镍精矿的氯气浸出设备技术领域,公开了一种浸出铜镍精矿的三相反应槽,包括槽体、槽盖、搅拌装置和气提装置;槽体上端侧面设有出液口;槽盖上安装有进液管、氯气加入管、冷却水管、排风管、温度检测仪、OPR测试仪和位于槽盖中央处的通孔;搅拌装置包括传动机构和搅拌机构;搅拌机构包括转轴和搅拌桨,转轴上端与传动机构的输出端驱动连接;气提装置包括压缩空气管和导流管,压缩空气管下端伸入导流管底部,导流管上端通过侧向设置的出液管与出液口连通;其中,出液管、进液管、氯气加入管、冷却水管和排风管上均设有自动调节阀门。本发明解决了现有镍精矿浸出设备浸出率低,氯气利用率低的问题。
一种从硫化铜砷渣中常压选择性浸出铼的处理方法,其处理过程的步骤包括:(1)将含铜砷铼的硫化渣先一段空气氧化浸出,控制浸出pH值为2-5;(2)再将一段浸出渣进行二段浸出,浸出过程中加入双氧水强化铼的浸出,过程控制浸出pH值为2-5。通过控制浸出条件,可将渣中铼选择性浸出,铼浸出率大于90%,砷的浸出率控制在15%以内,铜几乎不浸出,得到含铼0.3g/l、含铜砷铋总量小于1g/l的溶液,该溶液可通过萃取直接得到铼盐粗产品。工艺简单、远低于现有生产成本、易于实施。
本发明公开了一种镍电解混酸体系中除砷的方法,该方法通过补铁合理控制电解阳极液的铁砷比,同时控制除铁工序的温度以及pH值,使得在除铁工序80%以上的砷以砷酸铁或吸附的形式脱出,然后在除钴阶段控制除钴氧化电位、反应时间及其除钴前液pH值,进一步将除铁、砷过滤后液中的剩余砷在除钴段与氢氧化钴共沉淀除去。另外,将净化产生的除铁、砷过滤后渣以及除钴、砷过滤后渣进行除镍处理后过滤,过滤后液返造液进行处理,会带有部分砷进入造液工序,在造液工序通过控制溶液铜离子和电流密度诱导脱砷。本发明的方法很好地解决了镍电解含砷超标问题,电解新液含砷小于0.0002g/l,电解镍含砷均小于0.0005%,整体系统溶液砷脱出率达到98%以上。
本发明公开了一种协同萃取分离和回收重金属离子的方法,包括以下步骤:a.配置待测液,将含重金属离子的溶液与萃取剂混合,并将混合后的料液置于分相器中;b.待测溶液的磁化,开启恒温水浴箱的循环泵,打开阀门,将加热棒的温度设置在55℃,待测溶液从分相器中经过设置于输液管路两侧的可调永磁场进入恒温水浴箱,再由恒温水浴箱经过设置于输液管路两侧的可调永磁场,回到分相器;c.萃取,磁化完成后,关闭循环泵,待测溶液全部流回分相器时,分离和回收重金属离子;d.取样分析,待测液分层后分别用取样器对上、下层液体取样,贴上标签以示区别,用气相色谱对其进行分析。
本发明公开了一种红土镍矿浸出液中杂质铁、钴、锰离子的萃取分离方法,将萃取剂P204、Cyanex272、TBP与稀释剂磺化煤油以一定比例混合得到协同萃取体系,并调整萃取剂比例、皂化率、混合时间等萃取工艺参数,可以获得良好的萃取分离效果;通过调整反萃实现硫酸镍初级液中铁、钴、锰的有效去除,使初级硫酸镍溶液中的铁、钴、锰含量降低至0.0001g/L以下;并获得较高的金属回收率,具备工业化应用的潜力。
本发明公开了一种锌电解耐蚀阳极板材料及其制备方法,按照质量百分比计,Ag 0.1%‑0.3%、Ca 0.005%‑0.015%、Sr 0.006%‑0.008%,余量为Pb,通过熔融,加入Y 0.01%‑0.03%熔炼、保温、冷却、轧制得到锌电解阳极板,其抗拉强度大于25MPa、硬度大于7.5、伸长率不低于40%,导电率不低于8S/m。本发明通过向传统的Pb‑Ag‑Ca‑Sr四元合金中添加稀土Y,得到的阳极板材料具有优异的力学性能、抗腐蚀性能及电学性能,应用前景广阔。
本发明公开了一种含硅氢氧化镍钴的盐酸浸出方法,该方法包括如下步骤:(1)碱液预浸:将含硅氢氧化镍钴采用氢氧化钠溶液浆化、预浸、压滤,得到预浸滤液和脱硅后氢氧化镍钴;(2)工业水洗涤:将脱硅后氢氧化镍钴采用工业水洗、压滤,得到洗涤后氢氧化镍钴和洗涤滤液;(3)盐酸浸出:将洗涤后氢氧化镍钴采用盐酸溶液浆化、浸出、压滤,得到氯化镍溶液和氯浸渣,氯化镍溶液送电解镍生产系统,氯浸渣返火法处理。通过本发明浸出方法,含硅氢氧化镍钴中硅的脱除率可达到80%以上,镍的浸出率≥99.5%,氯化镍溶液中Ni≥80g/L,氯浸渣渣率≤0.5wt%,渣含镍≤8wt%;且除硅后保证了氯化镍溶液进入电解镍生产系统产出的电解镍产品的外观质量。
本发明提供了一种镍精炼系统中除锑的方法,该方法利用双氧水进行氧化沉淀并通过常压除锑和加压除锑两段除锑反应,达到在镍精炼系统中高效除锑目的,全系统除锑率达到89%,电积镍中含锑稳定控制在≤0.0003%的范围之内。本发明采用氧化沉淀法除锑的工艺手段,操作简单,无污染,在不对现有流程进行技术改造的情况下,能够实现镍精炼系统锑杂质元素的有效去除,且具有流程短、除锑率高的特点。
本发明涉及一种从磁钢废料中提取镍钴的方法,该方法包括以下步骤:⑴加压浸出:在盐酸中加入磁钢废料进行加压浸出,分别得到铁渣和浸出液;⑵中和除铜:在浸出液中加入氢氧化钠,经中和反应、沉淀分离后,分别得到pH=5.0~5.5的反应液A和氢氧化铜渣;⑶氧化除钴:反应液A中加入氢氧化钠,经氧化反应、沉淀分离后,分别得到pH=4.5~5.0且钴离子浓度为0.01~0.02g/l的反应液B和钴沉淀渣;⑷中和沉镍:反应液B中加入氢氧化钠,经中和反应、沉淀分离后,分别得到pH=7.5~8.0的氯化钠尾液和氢氧化镍沉淀物;⑸氢氧化镍沉淀物煅烧,产出含镍大于76%的氧化镍产品;⑹电解:氯化钠尾液经电解,分别产出氢氧化钠、氯气和氢气。本发明效率高,不产生废渣和废水,符合现代环保利用。
中冶有色为您提供最新的甘肃有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!