本发明涉及铁矿石选矿粉的铁品位无损检测技术领域,具体是一种铁矿石选矿粉铁品位的高光谱检测方法。
背景技术:
铁矿粉是钢铁工业的主要原料,铁矿粉的品质直接影响生产成本、环境效益和产品质量。随着国内供给侧改革的稳健推进,要求钢铁企业加大高品位铁矿粉的使用,要求入厂铁矿粉的品位达到某个等级。中国铁矿资源特点是贫矿多,富矿少,平均品位只有32.67%左右,绝大部分铁矿石需要经过选矿后提炼制成铁精粉,剩余处理成铁尾矿。为了监查选矿效果,确定精矿的品位等级,同时检测尾矿铁含量,需要不间断地快速、准确测定铁矿厂选矿产品的铁品位。因此铁矿石选矿粉铁品位检测方法改进对选矿铁品位质量监控、检测时效性和防止铁尾矿铁浪费具有重要的意义。
现有测定铁品位的方法主要有仪器分析法和化学分析法,主要有重量法、比色法、滴定法、原子吸收法、等离子体发射光谱法和x射线荧光光谱法等。仪器分析检测铁品位的方法需将样本制成溶液或熔融状态,存在仪器测试样本制备耗时,存在原料损耗和污染,一般一个样品检测需要30分钟,检测精度有待进一步提高。化学分析检测铁品位的方法精度最高,存在分析步骤繁琐、周期较长、存在原料和化学试剂损耗和污染等缺点,一个样品检测需要约30分钟;在iso标准和国家标准规定中,选矿厂铁精粉中铁品位最常用化学检测方法是重铬酸钾滴定法、坏血酸滴定法、edta滴定法,其中重铬酸钾的使用会严重污染了环境,坏血酸滴定法、edta滴定法虽然无汞、无络的污染,但是适用范围和稳定性较差,会对环境造成少量污染;
cn1810783651.0公开了一种基于光谱数据的铁矿石全铁含量检测方法,其基于改进粒子群算法优化的双隐含层极限学习机神经网络的铁矿石全铁品位检测模型,利用光谱数据对其矿石种类分类的基础上检测其全铁含量。
关于选矿厂精铁粉和尾矿的铁品位高光谱检测方法还未见公开报导。
技术实现要素:
本发明要解决的技术问题是提供一种铁矿石选矿粉铁品位的高光谱检测方法,可以简便、无损、快速测定精矿样品及尾矿的铁品位,是铁矿粉品位无损检测技术领域的有益补充,具有重要的意义。
本发明解决其技术问题采用的技术方案是:
一种铁矿石选矿粉铁品位的高光谱检测方法,包括以下步骤:
s1.建立不同铁品位等级的铁矿石选矿粉的高光谱基准数据库;
s2.确定不同铁品位的铁矿石选矿粉的高光谱曲线的强线性识别波段;
s3.建立
声明:
“铁矿石选矿粉铁品位的高光谱检测方法与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)