本发明涉及一种真空反应烧结高韧性碳化硅陶瓷的方法,其特征在于采用颗粒级配原料组成外加1~1.5%木质素磺酸钙结合剂先混和,然后与水混合配料、注浆成型、真空烧结最终制得SiC陶瓷,所制备的SiC材料的断裂韧性KIC可以在5~5.6MPa·m1/2范围内可调,相对于普通SiC-B-C或SiC-A/N无压烧结的KIC=3.0~4.5MPa·m1/2,提高了5%之多,适用于高温工业炉的使用,具有良好的商业价值。
一种氧化钇稳定氧化铪的真空镀膜材料的制法,其特征是,包括以下步骤:1)以氧化铪和氧化钇粉料为原料,按摩尔比氧化铪:氧化钇=73~98:2~27,均匀混合,然后添加聚乙烯醇结合剂使粉料团聚,造粒;2)对颗粒料进行预烧,预烧温度为1260℃;3)在真空烧结炉中烧结,真空度为1×10-2~1×10-4帕,升温速率为3~8℃/分钟,到达1700~2280℃时保温,保温时间为150分钟以上,然后自然冷却降温至室温。本发明能够解决传统氧化铪镀膜材料镀膜过程中的不稳定和折射率不均匀性问题,同时提高氧化铪薄膜的损伤阈值。
一种三元硼化物基钢用耐磨覆层零件的制备方法,先压制出需要制备三元硼化物基金属陶瓷的压坯,在真空烧结炉中制备出三元硼化物基金属陶瓷硬质覆层,再利用设计制造浇铸此硬质覆层零件的浇铸模型,将三元硼化物基金属陶瓷硬质覆层固定在铸型型腔的要求位置上,然后向铸型型腔内浇注钢液,制备出三元硼化物基金属陶瓷覆层零件的毛坯,再经机械加工而形成覆层零件。本发明解决了烧结法难于解决的大尺寸覆层零件由于受真空炉规格的限制而无法制备的问题,不仅适用于需要局部耐磨的大尺寸覆层零件,而且在用于对三元硼化物基硬质覆层要求较厚的耐磨损零件的制备时,可降低成本,提高效率。
本发明公开了一种NbSe2纳米材料的制备方法,包括:(1)取单质Nb粉,单质Se粉和NaCl放入球磨罐中,进行酒精湿磨,使其充分混合细化;(2)球磨完成之后将沉淀物放入烘箱中进行烘干;(3)将烘干以后的沉淀物放入反应釜中进行高温真空烧结,即可得到高性能和良好形貌的NbSe2纳米材料。本方法在反应中加入了适量的氯化钠介质,通过该介质在高温下的良好传输性能通过控制介质的含量和反应的温度与时间来控制生成产物二硒化铌的形貌和结构,方法简单,容易操作,所制备的NbSe2纳米材料,具有高的润滑性能和良好导电性能并且具有较好形貌。具有很好的实用性和经济性。
本发明涉及电子烟技术领域,且公开了一种高强度电子烟陶瓷雾化芯制备方法,将SiO2,Al2O3,碱金属氧化物和碱土金属氧化物粉体以及造孔粉与石蜡和油酸混合,通过搅拌机进行加热搅拌混合,将搅拌的混合浆料放入压注机中,通过压注机下注模具进行压注得到陶瓷坯体,将陶瓷坯体进行脱脂烧结,得到陶瓷基体,在陶瓷基体上丝印发热浆料,经过真空烧结后得到所需陶瓷雾化芯。该高强度电子烟陶瓷雾化芯制备方法,所使用的氧化铝和碱金属氧化物和的摩尔比适中,防止陶瓷基体在烧结时收缩剧烈,所制备出的雾化芯孔隙率高,防止材料的烧结活性太大,粉料在烧结时温度过高,且由于烧结时液相不足的问题,使陶瓷基体强度更好,使电子烟的使用寿命更长。
本发明涉及复合粉末技术领域,提供了一种碳化钨‑碳化铬‑镍复合粉末的制备方法,包括以下步骤:按质量含量计,将多尺度碳化钨58~78%、多尺度碳化铬10~30%和多尺度镍6~20%进行混料,得到混合粉体;其中,多尺度碳化钨的粒径分布于0.6~6μm之间,多尺度碳化铬的粒径分布于0.5~3μm之间,多尺度镍的粒径分布于0.9~5μm之间;将所述混合粉体进行造粒,得到混合物颗粒;将所述混合物颗粒进行真空烧结,得到碳化钨‑碳化铬‑镍复合粉末。本发明制备方法得到的碳化钨‑碳化铬‑镍复合粉末在超音速火焰喷涂制备金属陶瓷涂层时,能够使得所制备的金属陶瓷涂层相结构与粉末基本一致,提高金属陶瓷涂层的力学性能。
本发明公开了一种中空纤维膜的制备系统及其制备方法,属于中空纤维膜制备技术领域,一种中空纤维膜的制备系统,包括沿生产线方向依次设置的碳化硅烧结炉、混料器、真空练泥机、挤出机、干燥箱、以及真空烧结炉,旋转支撑座的顶端固定有混料桶,外齿圈固定套设于混料桶的外侧壁,每个导杆上均滑动连接有导套,每个导套的顶端均固定有弹簧,弹簧的顶端固定于机架内部的顶壁,两个导套之间固定有安装板,安装板的底部固定有搅拌器,推动件位于安装板的上方,推动件与齿轮驱动件之间通过传动件传动连接,齿轮驱动件的底端穿过安装板,且固定有半齿轮。本发明的中空纤维膜的制备系统及其制备方法,混料均匀,制备的中空纤维膜机械强度良好。
本发明公开了一种刀具用复合陶瓷材料及其制备方法,该材料的组成按质量百分比为:TiC为25~30%、石墨烯为0.1~1%、MgO为0.5~1%、Mo为2~4%、Ni为1.5~5%、Y2O3为0.5~0.8%,其余均为Al2O3。制备方法包括以下步骤:按照质量百分比进行配料;将上述配料进行混合,球磨,将球磨混合好的浆料放入真空干燥箱中进行干燥,干燥之后的粉料用100~200目分样筛过筛;将过筛之后的混合粉料压制成坯;放入真空烧结炉中烧结,得到刀具用复合陶瓷材料。本发明优化了陶瓷材料组分配比和工艺参数,制备出综合性能优异的复合陶瓷材料,其自身脆性较大的缺点得到改善。
本发明公开了一种氧化锆基金属陶瓷材料的制备方法,包括以下步骤:步骤1、取设计量的铁金属粉末和氧化锆基陶瓷粉末混合成粉得到初级混料;步骤2、进行压制成型,得到压坯件;步骤3、将得到的压坯件烘干保温;步骤4、进行真空烧结,得到半成品;步骤5、将得到的半成品进行打磨、精整和干燥后即得。本发明提供的氧化锆基金属陶瓷材料的制备方法,主要解决传统预热炉中金属陶瓷换热管不耐用、换热效率差的问题,通过复配一种具有良好导热性和伸长率的氧化锆金属陶瓷材料,改进传统生产工艺,克服了传统换热管使用寿命短、换热效率低的问题,尤其适用于预热温度在800℃以上的气相预热炉中。
本发明公开了一种MAX相金属陶瓷间接增材制造方法,包括如下步骤:将MAX相粉末与粘结剂进行充分混合搅拌且加温,粘结剂的加入量占混粉总体积的25~45%,粘结剂由下列重量份的原料制成:醋酸丁酸纤维素25~35份,聚乙二醇60~80份,硬脂酸1~3份,吩噻嗪0.4~0.6份;通过造粒机制备成粒状喂料,使用注射成形机将粒状喂料加工成用于间接增材制造的金属陶瓷丝材;将金属陶瓷丝材装载到常规的塑料3D打印机上,打印出金属陶瓷生坯;将金属陶瓷生坯脱脂,去掉粘结剂;真空烧结,固结金属陶瓷生坯,冷却后获得成品。本发明可以直接用常规的3D打印设备和打印技术,可以制备形状复杂的陶瓷制品,本发明具有打印设备成本低、打印产品质量好的有益效果。
本发明公开了一种高耐蚀性烧结钕铁硼磁体的制备方法,包括如下步骤:1)采用速凝薄片工艺制备钕铁硼基速凝薄片,之后用氢爆法将合金薄片破碎并通过气流磨粉碎制备3‑5微米钕铁硼基原料粉末;2)将一定量的SiC粉末与上述钕铁硼基原料粉末置于球磨机中球磨0.5‑1小时,使其混合均匀;3)将球磨均匀混合后的粉末在磁场中进行取向成型,得到压坯;4)将压坯进行等静压后进行真空烧结,然后回火热处理,最终获得高耐蚀性的烧结钕铁硼磁体。本发明的钕铁硼磁体相对于现有技术中采用合金化防护手段制备的磁体性能要好;且本发明制备过程中没有用到化学沉积或物理沉积或涂有机涂层,因而没有产生“三废”问题。
本发明公开了一种高性能钕铁硼磁体的制备方法,包括如下步骤:1)采用速凝工艺制成钕铁硼合金速凝片;钕铁硼合金的化学式为NdxFe100‑x‑y‑z‑x1ByCozCux1,质量百分比:x:30‑31.5,y:0.95‑1,z:1‑1.2,x1:0‑0.06;2)将速凝片粗破碎后放入含Dy或Tb的溶液中进行球磨,并加入还原剂;所述含Dy或Tb的溶液浓度为0.01~0.1mol/L,由含Dy或Tb的化合物溶于去离子水中配置而成,所述还原剂的加入量为每摩尔数的Dy或Tb加入3~5摩尔的还原剂;3)将上述球磨后产物经去离子水洗涤,干燥;4)将干燥后的粉末磁场取向成型,等静压,真空烧结制成钕铁硼永磁材料。
本发明提供一种高纯度钽钌合金靶材及其制备方法,将市售的纯度为99.9%的钌粉和钽粉分别经真空高温升华提纯至纯度大于99.995%的钌粉和钽粉,经球磨混合后,经冷等静压压成块状,真空烧结熔炼,得到高纯度钽钌合金锭,然后高纯度钽钌合金锭经横向热锻,退火处理,热轧,冷轧,结晶退火处理,得到高纯度钽钌合金靶材。本发明的钌粉和钽粉的提纯工艺简单,提纯纯度高,深度去除Ca、Cr、Co、Cu、Cd、Cl、Fe、K、Li、Mg、Na、Ni,制备的靶材成分均匀、纯度高、晶粒细小,氧含量低,面积大,厚度薄。
本发明涉及一种燃气涡轮叶片石墨烯涂层薄膜及其制备方法。该方法通过将燃气涡轮叶片经喷砂、吹干、清洗、高温消毒干燥、工艺优化处理后放于模具上用石墨烯涂层浆料对燃气涡轮叶片通过喷涂设备进行自动喷涂,累计喷涂三次,最后进行真空烧结,形成石墨烯涂层薄膜。上述燃气涡轮叶片石墨烯涂层薄膜的制备方法制备得到的燃气涡轮叶片石墨烯涂层薄膜具有耐高温烧蚀、抗氧化、耐磨、抗冲刷的特点。在中航发株洲某所某型号发动机经过长久试车验证,对航空发动机寿命的提升起到了决定性作用。
本发明涉及一种硬质合金的渗硼方法,对烧结后的硬质合金进行渗硼,将硬质合金掩埋入渗硼介质后置入真空烧结炉进行渗硼烧结,烧结温度为1380~1480℃,保温时间为30~90min。所述渗硼介质为含BN、B4C、Al2O3的混合粉末,其规格、纯度和占比如下:NB,200~400目,纯度95%~99%,质量百分比0.5%~5%,B4C,200~400目,纯度95%~99%,质量百分比0.5%~5%,Al2O3,80~150目,纯度95%~99.5%,质量百分比90%~99%。渗硼后的合金经解剖后,可观察到表层渗入了黑色的含硼组织,经检测合金表层硬度提高,芯部的硬度不变。渗硼后产生了硬度梯度的硬质合金,在不降低韧性的基础上,提高了表层硬度。
本发明提供了一种自愈合YSZ陶瓷热障涂层材料,由以下摩尔百分比的成分组成:YSZ陶瓷90%~97%,SiB61.2%~7%,金属硅化物0.9%~6%。本发明还提供了一种制备该材料的方法,包括以下步骤:一、将YSZ粉、SiB6粉和金属硅化物粉末球磨混合均匀后过筛,得到混合粉;二、冷等静压成型,得到粉末压坯;三、进行真空烧结处理,得到自愈合YSZ陶瓷热障涂层材料。本发明采用SiB6和金属硅化物为自愈合相,充分利用自愈合相氧化后的体积膨胀和氧化产物的流动愈合裂纹,同时阻止裂纹向粘结层和镍基高温合金基体扩展,能够显著提高热障涂层的服役寿命和可靠性。
硬质合金块体材料原位合成的工业化生产方法,属于硬质合金技术领域。以WO2.9、Co3O4和炭黑为原料,按照最终Co含量的要求,考虑制备过程中Co的蒸发量、损耗量以及粉末带入氧化性气体造成碳的损耗量,计算出上述三种原料的用量比,将原料进行球磨混合,烧结过程中造成材料质量的减少和WC、Co粉末的烧结损耗系数k,计算所需原料粉末质量;采用热压烧结工艺、真空烧结工艺或低压烧结工艺应用初期低的烧结压力和阶段性保温、阶段性增加压力,即可得到硬质合金块体材料。本发明工艺步骤简单、流程短、节能环保,又可实现硬质合金的工业化大规模生产。
本发明涉及一种钨镍无磁硬质合金材料的制备方法,包括:(1)先将氧化铬与钨粉通过高温一起碳化;(2)将镍粉与碳化铬和碳化钨粉混合均匀;(3)将上述已混合均匀的混合物加入湿磨机进行湿磨;之后将已磨好的湿料烘干;(4)将上述烘干后的混合物通过干粉压制成型或注塑成型;(5)将成型后的产品放在石墨板中,通过真空烧结即得。本发明的制备方法简单,成本低,适合于工业化生产;通过本发明方法制备的产品呈黄色,硬度不会太硬易加工,加工后产品的色泽透亮。
一种热喷涂用多孔MCrAlY合金粉末的制备方法,涉及一种适用于可以直接制备多孔可磨耗封严涂层的热喷涂球形多孔金属粉末材料的制备方法。其特征在于其制备过程是将合金粉与造孔剂进行混合造粒,再进行真空烧结,获得冶金结合的多孔金属粉末材料。本发明制备的热喷涂用多孔MCrAlY合金粉末球形度高、流动性好(50~60s/50g)、热喷涂工艺适应性优,累积气孔体积为0.01~0.2cm-3/g,具有较好的自支撑强度,孔洞率和粒度范围可控。使用该粉末制备涂层无需后处理即可直接获得孔洞分布均匀且多为闭孔的封严涂层,可提高涂层的可磨耗性和抗高温氧化性能,特别适于航空发动机的高温封严。
本发明公开了一种球形热喷涂粉的生产方法,依次包括:A.首先按质量百分比计,将55~95%的碳化钨粉、5~33%金属镍粉或钴粉或铁粉,以及0~22%的碳化铬粉加入球磨机,同时加入占原料粉末总质量的15~35%的湿磨介质,以及2~5%的成型剂,湿磨12~40小时,得到混合料浆;B.离心雾化造粒,得到球形混合粉料;C.将球形混合粉料置于脱蜡烧结一体炉中,脱除成型剂并在800~1350℃温度下真空烧结20~70分钟后,冷却至50℃以下出炉;D.将由C所得烧结块料破碎过筛,得到球形热喷涂粉末;本发明适用性广,不仅适用于碳化钨基球形热喷涂粉末,还适用于其它金属、非金属及其混合物的热喷涂粉末的生产;生产过程无毒害,质量稳定一致,可生产小于30微米的热喷涂粉。
本发明公开了一种稀土氧化物改性硬质合金车刀片及其制备方法,制备方法包括如下步骤:S1、将偏钨酸铵、硝酸钇、硝酸锆配制出混合溶液并加热,蒸发出水分生成前驱体沉淀物,干燥前驱体沉淀物获得前驱体块体并粉碎过筛,以筛集前驱体粉体。对前驱体粉体进行氢热还原成W‑Y2O3/ZrO2粉末。S2、将W‑Y2O3/ZrO2粉末与碳粉混合球磨形成钨碳复合粉体,再对钨碳复合粉体升温保温,接着冷却后进行磨碎过筛,筛集WC‑Y2O3/ZrO2粉体。S3、将配制的钴粉与WC‑Y2O3/ZrO2粉体进行混合球磨,获得WC‑8Co‑Y2O3/ZrO2复合粉体。S4、将WC‑8Co‑Y2O3/ZrO2复合粉体放入模具中压制生坯真空烧结成型获得硬质合金车刀片。通过湿化学法微量掺杂Y2O3、ZrO2实现了WC与第二相粒子分子级别的混合,相比普通球磨和未掺杂的硬质合金性能得到显著提升。
本发明公开一种微纳米混杂尺度多相陶瓷颗粒的制备方法,包括:将Al粉、Ti粉、Cu粉、Mg粉以及B4C和BN混合粉末制成圆柱形压坯,进行真空烧结,得到原位多尺度TiCN、AlN和TiB2颗粒的陶铝复合材料将所述陶铝复合材料切块置于蒸馏水中,并加入浓度为36wt.%~38wt.%的盐酸,静置12~24h,去除透明液体,得到陶瓷颗粒;其中,所述蒸馏水与盐酸的体积分数比为1:2;将所述陶瓷颗粒进行去离子水超声洗涤4~6次后,进行无水乙醇超声洗涤2~3次,干燥得到微纳米混杂尺度多相陶瓷颗粒。通过原位反应,并优化TiCN‑AlN‑TiB2颗粒的百分含量,真空热压烧结制备含有多相混杂尺度的陶瓷颗粒的陶铝复合材料,并通过萃取手段收集盐酸腐蚀铝基体后留下的微纳米混杂尺度多相陶瓷颗粒。
本发明公布了一种抗粉化块体吸气剂的制备方法,所述方法包括如下步骤:将吸气合金中的原料按一定比例进行配制,通过熔炼的方法制备成合金,然后对合金在保护气氛下进行破碎和球磨;将吸气合金粉末与0.1~70%wt%钛及钛合金纤维均匀混合形成合金混合物;将上述合金混合物在钢性模具中进行压制形成压坯;在真空度为3~5×10‑3 Pa的真空环境下,对压坯进行真空烧结,即可得到抗粉化能力强的块体吸气剂。本发明产生的块体吸气剂产品,在MEMS晶元级封装中具有较好的韧性,克服了产品使用过程中掉粉掉渣的现象,能够维持晶元封装后在振动环境下较好的真空度,有利于延长使用寿命,并且结构设计简单,适合大批量生产,可以有效地满足用户的需求。
本申请公开了一种粉末冶金动环,粉末冶金动环的粉末冶金材料组分为,钴粉0.4‑0.6%,镍粉7.3%‑8.5%,余量为碳化钨粉。本申请提供的粉末冶金动环,其热红硬性好,高温条件下其性能不会发生明显的变化,耐磨性能好。本申请还公开了粉末冶金动环的制备方法,包括混料、球磨、干燥、添加成型剂、压模成型、烧结等工艺,通过在球磨后的混料中,加大成型剂的用量,起到了很好的成型效果,提高了成型的性能,并且通过后续的真空烧结过程中采用多阶段的温度控制,脱去成型剂,既保证了成型的性能,同时又能将成型剂脱去,避免其影响烧结后的产品性能。
本发明公开了一种超细硬质合金的制备方法,其特征是对先配制Cu源混合液,再添加十八胺对超细WC粉末进行分散处理,次亚磷酸纳还原硫酸铜使P元素和Cu元素在WC颗粒表面沉积,然后在750~780℃进行处理使WC粉末中形成Cu‑P共晶组织体,最后经过球磨混合、压制成型后进行液相烧结。升温到700℃后即充入Ar气抑制Cu挥发,最后在1370~1390℃真空烧结,烧结结束后以80~100℃/min的平均冷却速度快速冷却到700℃以下,避免Cu3P和Co2P脆性相在WC/Co界面的析出,在低的烧结温度下制备出了强度≧3600MPa,组织均匀,无WC晶粒异常长大,WC晶粒度0.35~0.5μm的超细硬质合金。本发明克服了现有的超细硬质合金制备时,采用高的烧结温度会导致晶粒出现异常长大的问题,可用于数控加工切削刀具材料。
本发明公开了一种钛铌钽锆合金的制备方法,以Ti粉、Nb粉和Ta粉为原料,采用粉末冶金方法依次进行混粉、等静压和烧结,制备得到Ti‑Nb‑Ta中间合金,其中,粉末冶金方法进行混粉时依次进行手动混粉和机械混粉,手动混粉3~6次,机械混粉2~4h;真空烧结时,烧结温度为1100℃~1300℃,保温2~4h;将Ti‑Nb‑Ta中间合金与混合料进行压制,得到电极块并组焊为自耗电极;其中,混合料由0级海绵钛颗粒和工业级HZr‑1海绵锆颗粒组成;将自耗电极进行至少四次真空自耗熔炼,每次真空自耗熔炼时真空度低于10‑1Pa,得到Ti‑Nb‑Ta‑Zr合金铸锭;本发明解决了在制备Ti‑Nb‑Ta‑Zr合金熔炼过程中Ta、Nb元素难溶的问题。
一种原位TiC颗粒与大比例非晶合金共强化锰钢基复合材料及其制备方法,其主要制备过程:将钛粉(Ti)和炭黑或石墨粉(C)混合,高能球磨后低温煅烧得到高反应活性的Ti‑C中间相合金粉体;再利用高能球磨使中间相合金颗粒表面包覆镍层;再加入铁粉和锰粉,再进行高能球磨,并使部分铁粉和锰粉达到纳米尺度,然后利用高压压制得到致密块体坯料;将坯料放入真空双室热处理炉中进行真空烧结,烧结完成后快速气冷,得到最终所需的复合材料。该复合材料表现出超高的弹性模量、强度、硬度及良好的塑韧性,且工艺简单、易于规模化,适用于开发在高温、高应力、硬磨料磨损等工况下具有长使役寿命的齿轮、轴承、连杆、衬板、轧辊、刀具、模具等产品。
本发明属于高温难熔金属靶材制备领域,具体涉及一种高致密度钼铌合金溅射靶材的制备工艺,该工艺包括如下步骤:原料混合;胶套装粉作业;冷等静压作业,升压至一定压力后,保压一段时间,然后泄压,最后将压制坯从胶套取出;真空烧结或氢气保护烧结;热等静压作业,对烧结坯直接进行热等静压作业;热轧作业,对钼铌合金进行金属包套轧制,热轧后退火去除应力;进行磨削等机加工作业,得到最终所需产品尺寸。该工艺步骤简单,操作便捷,制备的钼铌合金溅射靶材纯净度、相对密度均满足高端电子产品镀膜领域使用需求,且生产成本低,产品尺寸宽泛,便于工业化批量生产。
本发明涉及一种厚膜和覆铜一体陶瓷电路板的制备方法,所述的方法包括如下步骤:(1)配置电子浆料;(2)通过丝印板或钢板网,将电路图形用电子浆料印制在陶瓷基板上;(3)将部分图形的铜片覆在对应的电子浆料图上;(4)烘干后真空烧结;在同一块陶瓷基板上,既有印刷形成的0.005‑0.1mm印刷电路部分,又有覆铜厚度为0.1‑5mm的覆铜陶瓷部份,使得同一块陶瓷电路板既可以有交流电也可以有直流电;既有低电压也可以有高电压。
本发明公开了一种焊接式硅芯片高绝缘台面钝化保护工艺,包括以下步骤:硅单晶片切割、单晶片磨角、真空烧结、酸腐蚀、涂敷聚酰亚胺、真空排泡、阶梯烘烤、清洗形成钝化保护芯片、涂覆GD‑406蓝色硅橡胶、真空排泡、室温硫化化、高温固化、检测、真空包装出厂。本发明通过对传统芯片制造工艺的改进,通过PI胶的应用对芯片台面进行钝化和双层致密保护,并可有效地俘获PN结台面可移动电荷,降低了芯片的IRRM,提高了芯片抗击穿能力和综合电性能,解决了粘附性、热膨胀、机械应力及气孔等技术问题,从而得到一种保护致密、耐高压、耐温范围广、高性价比、高可靠性的高压功率半导体模块芯片,有效提高产品的可靠性和良品率,值得推广和使用。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!