本发明公开了一种磁片连续送料视觉检测设备,包括视觉检测机、连续送料机构,所述视觉检测机包括转盘、驱动电机、视觉检测相机、出料机构,所述连续送料机构将磁片体送至转盘,驱动电机驱动转盘旋转并将磁片体转动至视觉检测相机进行视觉检测,所述出料机构将合格磁片体与不合格磁片体分别输出。本发明提供一种可以连续地对磁片进行供给并进行视觉检测的磁片连续送料视觉检测设备。
本发明涉及复合材料技术领域,具体涉及一种钨/铜层状复合材料、制备方法及其应用,制备该层状材料的方法为:将处理完成的钨片和铜片交错堆叠,放入模具获得待烧结体;进行真空烧结,真空度为10~20Pa,烧结温度为800~900℃,烧结压力为14~21KN,升温速率为50~100℃/min,保温5~10min,加压或降压速率为1KN/min,随炉冷却。按照本发明提供的技术方案制备的钨/铜层状复合材料,钨/铜界面连接效果较好,结合强度较高,抗弯强度最高可达1441MPa,并且可以通过控制钨箔、铜箔的厚度来调整导热性能。本发明制备的钨/铜层状复合材料对于面向等离子体材料、热沉材料、封装材料的应用上有一定参考。
本发明公开了一种铬和锰改性Mo2FeB2基金属陶瓷及其制备方法,将钼粉、铁粉、硼粉以及铬粉和锰粉按照一定比例进行配料,然后进行球磨,球磨后的混合浆料经干燥后过筛造粒;将过筛后的混合物料装入模具压制成型,经真空烧结后炉冷,得到一种铬和锰改性Mo2FeB2基金属陶瓷。本发明原料资源丰富,制备工艺简单,生产成本较低,所获得的铬和锰改性Mo2FeB2基金属陶瓷具有较高的硬度、强度,同时具有优良的耐磨性。
本发明属于光学镀膜材料领域,具体涉及一种硅氧铝三元复合光学镀膜材料及其制备方法。本发明以固体置换法为技术核心,包括原料高温烧结、冲压成型、破碎筛分、真空烧结等工艺。本发明制备出的复合光学材料具有高致密性、高重现性及镀膜高均匀性等特点,对传统光学薄膜存在的不耐摩、膜层龟裂、出现网状道子等现象进行改善。本发明制备方法操作工艺简单便捷,得到复合硅氧铝光学薄膜结构稳定,耐磨耐腐蚀,折射率低以及透光率高,可以广泛用于光学镜头、手机面板、手机盖板、行车记录仪、安防镜头等光学元件中。
本发明涉及一种网状结构增韧仿生复合材料及其结构件的制备方法,该仿生复合材料为层状复合结构,该层状复合结构由若干层叠层单元构成,叠层单元由金属网布、铝箔、碳纤维、铝箔、金属网布、钛箔自上而下依次叠放构成;其结构件通过将金属网布、铝箔、碳纤维、铝箔、金属网布、钛箔自上而下依金属网布、铝箔、碳纤维、铝箔、金属网布、钛箔顺序叠放后进行真空烧结后制得。
本发明公开了一种高钒合金钢碳化物添加剂,由如下重量百分数的组分形成:48‑55%碳化铬、40‑45%碳化钼、4‑8%碳化铌。本发明还公开了一种高钒合金钢碳化物添加剂的制法和营业,包括球磨、插筛造粒、抽真空烧结、保温排胶以及随炉冷却,得到高钒合金钢碳化物添加剂。本发明选用高熔点的金属碳化物以及与高钒钢基体晶粒浸润良好的金属碳化物烧结成合金碳化物,添加到粉末高钒合金钢坯体进行烧结,能够扩大高钒合金钢致密化温度范围,与高钒钢晶体界面浸润,能够抑制高钒合金钢烧结时的晶粒长大,提高了高钒合金钢硬度和强度,扩宽了粉末烧结高钒合金钢材的烧结温度范围。
本发明涉及一种固体自润滑复合材料及其制备方法,属于金属基自润滑摩擦材料的技术领域。其原料为铜粉、锡粉、镍粉、二硒化钨,石墨及碳化钨。其中,自润滑复合材料是以铜为基体,石墨及二硫化钨纳米片为固体润滑添加剂。其质量百分比,由铜粉为65%~80%、锡粉为5%~12%、镍粉1%~10%、二硒化钨1%~8%、石墨1%~5%、碳化钨0.5%~3%组成。采用粉末冶金温压烧结成型,真空烧结获得铜基自润滑复合材料。该材料具有摩擦系数低,强度高,抗磨损能力高等特点,从而满足不同条件下对铜基自润滑材料的需求。
本发明公开了一种自润滑轴承材料的生产工艺,由硫化钼、氟化钾、硬脂酸镁、钴、铜、铬、镍、氧化锆、碳、硅、锡、铋和铁组成,按配比称取各原料粉末,充分混合,放入球磨机内球磨,然后装入轴套模具中进行压制成型,将轴承毛坯置入真空烧结炉中进行烧结,达到设置温度后保温,然后随炉自然冷却,将自然冷却后的轴套毛坯进行表面磨削、去毛刺、倒角处理,即可。本发明轴承材料的原料易得、价格低廉,制备工艺简单、参数易控,生产过程安全环保,特别适合于大规模的工业生产,该材料制备的滑动轴承可广泛应用于钢铁、冶金、能源等重型机械装备中,特别适合要求无油润滑的场合。
本发明公开了一种钼合金,包括以下重量份的原料:99.95%纯钼粉1000‑2000份、纯碳粉10‑30份、氢化钛200‑300份、氢化锆80‑120份。所述的钼合金的制备方法,包括以下步骤:(1)混合得到合金粉末;(2)压制成压坯;(3)烧结;(4)拉拔和墩粗;(5)退火处理;(6)冲压成型;(7)出料。本发明能制造出性能均匀高强度和高延性的钼合金,化学成分均匀,组织均匀,氧含量低;采用真空烧结与氢气烧结相结合的方法,控制合金烧结过程合金元素的变化趋势,进而实现降低氧含量的目的。
一种ZrB2-SiC超高温陶瓷的烧结方法,它涉及一种超高温陶瓷的烧结方法。本发明要解决现有制备ZrB2-SiC超高温陶瓷的工艺存在烧结温度高,能耗大的问题。ZrB2-SiC超高温陶瓷的烧结方法按以下步骤进行:一、称取ZrB2粉、SiC粉和柠檬酸;二、球磨混合,得到浆料;三、将浆料烘干得到复合粉体;四、在温度为1500~1600℃条件下真空烧结得到ZrB2-SiC超高温陶瓷。本发明ZrB2-SiC超高温陶瓷的烧结方法,将烧结温度降低了约300℃,减少了能耗,所得产物的致密度可达98%,满足在1800℃含氧气氛中的使用要求。本发明用于制备ZrB2-SiC超高温陶瓷。
一种生产真空感应炉所用大型石墨发热体多块材料粘接方法,使用石墨块拼接成大型石墨发热体,石墨块的分别设有相互配合的“T”型凸台和“T”型卡槽,相邻两个石墨块通过凸台和卡槽相互卡接并留有填胶缝隙,在相互卡接的凸台和卡槽的上端面开设有螺纹孔;将拼接好的石墨发热体放置在烘干炉内,使用高压胶枪的注胶阀与石墨发热体螺纹孔连接,并将高温石墨胶充分填充到拼接石墨发热体的填胶缝隙中,高温石墨胶由糠醇、妥尔酸TEA盐、超导电炭黑和人造石墨粉组成,烘干,得到大型石墨发热体。优点是:可以生产出直径2000mm以上的石墨发热体,且成品率高,广泛应用于国内碳碳复合、军工及真空烧结领域。
本发明属于陶瓷复合材料的制备技术领域,具体涉及一种氧化铝/钛硅碳复合材料的制备方法。所述的复合材料由钛铝碳(Ti3AlC2),一氧化硅(SiO)均匀接触,真空烧结即可。本发明通过铝和硅的相互扩散,得到氧化铝/钛硅碳复合材料。本发明制备的复合材料具有高致密性,且性能稳定,复合材料中,氧化铝通过钛铝碳和一氧化硅反应生成的,能均匀包覆在钛硅碳晶体的表面,形成一种较为致密的氧化膜,阻碍了基体与外界的物质交换,提高了符合材料整体的抗氧化性能,钛硅碳又增强了复合材料的韧性,制备的复合材料纯度较高,烧结温度较低,并且具备较高的抗弯强度本发明工艺简单,易于工业化生产。
本发明属于碳碳复合材料加工技术领域,尤其是一种碳碳复合材料的防氧化涂层热处理设备及其方法,针对现有的真空烧结化使用不便,多个棒状复合材料堆积在一起烧结不仅影响烧结效果,且涂刷在表面的涂料容易受到刮花问题,现提出如下方案,其包括底座,底座的顶部滑动安装有移动板,底座的顶部设置有烧结炉,移动板的一侧设置有密封板,移动板的另一侧设置有驱动电机,密封板的一侧转动安装有金属网架,驱动电机与金属网架相配合金属网架的内部转动安装有放置板和稳定板,本发明结构简单,操作方便操作方便,便于对棒状复合材料进行烧结,避免将多个棒状复合材料堆积在一起烧结,避免造成涂料刮花,保证了产品质量。
本发明提供了一种双螺杆挤出机筒体内壁耐磨涂层的制备方法,采用双圆孔结构的钢管作为筒体外套,内置非金属芯管,底部采用耐火材料封底,采用反向浇注的方法在钢管内壁制备一层耐磨涂层,得到一种带耐磨涂层的整体式筒体,筒体外套的强度和合金层的耐磨性能优于普通真空烧结制备的带合金耐磨涂层的筒体,不仅解决了普通切割焊接双C型套筒接缝处塑料残存的问题,而且大大减少了螺杆、塑料高速运转过程中造成的磨损,延长了筒体的使用寿命,而且其制备工艺成本低,易操作,容易实现产业化。
本发明公开了一种基于涂覆氧化铝溶胶的碳化硅纤维的制备方法,包括以下操作步骤:将氧化铝颗粒和去离子水按比例混合得到氧化铝悬浊液,然后加入适量醋酸溶液和流平剂、消泡剂、润湿剂,再将悬浊液倒入球磨机中,球磨一段时间后再加热磁力搅拌得到氧化铝溶胶,最后将碳化硅纤维在氧化铝溶胶中浸渍提拉涂层,经过干燥和真空烧结后制备出表面含有氧化铝涂层的碳化硅纤维。本发明工艺简单、成本较低,适合大规模工业化生产,而且氧化铝涂层分散均匀、稳定性良好,可以在碳化硅纤维上长期稳定存在。
本发明公开了结合塑料注射成型的锰锌铁氧体磁芯成型新工艺,包括:(1)混合物料:按照配比将锰锌铁氧体粉料与热塑性粘结剂在混料机内混合均匀并制成粒料;(2)加热熔融物料:将上述粒料装入注射成型机的料斗中,并加热熔融至流态物;(3)注射成型:将上述流态物注入注射成型机的模具内成型得坯块,冷却取出后脱去粘结剂;(4)高温烧结:将脱去粘结剂后的坯块在气氛控制烧结炉内或真空烧结炉内烧结即得;本工艺可以制备出形状复杂的坯块,工艺简单,可操作性强,成型后的制品仅需精压、少量加工及表面强化处理工序即得产品,具有较高的经济效益和社会效益。
本发明公开了一种高电阻率碳化硅陶瓷及其制备方法,其特征在于,由下列重量份的原料制成:碳化硅70-80、二甲基硅油2-3、预胶化淀粉2-4、二氧化锗4-6、乳白玻璃2-4、无水乙醇15-20、氧化聚乙烯蜡2-3、短切碳纤维预分散体14-18、烧结助剂3-4、去离子水80-90;本发明添加的短切碳纤维提高碳化硅的力学性能,提高陶瓷的断裂韧性,提高素坯的强度和致密度,满足机械加工要求,本发明碳化硅陶瓷复合材料热导率高,抗热震性好,耐腐蚀,使用寿命长;工艺简单,操作安全,不造成污染,采用真空烧结制备的碳化硅陶瓷复合材料电阻率高,满足IT和电工行业的要求。
本发明公开的是一种漫反射型电磁波屏蔽材料。漫反射型电磁波屏蔽材料由具有高磁导率的烧结金属纤维无纺布毡组成。金属无纺布毡可通过干法无纺制毡或湿法无纺制毡制得,然后经过高温真空烧结而成。当电磁波遇到屏蔽材料时,部分电磁波会在屏蔽材料的表面发生不同角度的漫反射,绝大部分电磁波会在屏蔽材料内部发生错综复杂的多重漫反射。由于屏蔽材料采用的是金属纤维无纺布毡,其内部杂乱无章的金属纤维结构,显著增强了屏蔽材料内部对电磁波的多重漫反射作用,从而达到对电磁波的屏蔽目的。本发明的漫反射型电磁波屏蔽材料屏蔽效果优良,应用领域广,尤其适合在低频环境中使用。
本发明公开了属于合金靶材制备技术领域的一种用于大电流密度M型阴极敷膜的合金靶材制备方法。在对原料粉末提纯的基础上,利用等离子体球化技术制备OsRe、OsRu、OsIr、OsRh、OsW、WRe等预合金粉末,有助于获得高纯和高均匀的靶材。合金均匀性提高有助于阴极发射稳定性改善。采用真空烧结制备结构稳定的中间合金粉末,有效抑制合金烧结时铝的挥发,可稳定合金成分并提高靶材均匀性。采用多段氢气烧结工艺,获得高致密度的锇合金靶材。本发明研制的锇合金系列靶材具有高纯、高致密、高均匀的特点,同时可通过调整组元及其含量,满足M型阴极大电流发射的要求。
一种三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法。该方法包含以下步骤:1)将共沉淀制备的镱掺杂的钇铝石榴石粉体、烧结助剂、表面活性剂和三重蒸馏水球磨混合,制备水基浆料;2)制备石膏微孔模具,3)将所述的水基浆料注入到所述的石膏微孔模具中,脱模并干燥得到陶瓷纤维素坯;4)将所述的纤维素坯煅烧处理;5)将煅烧过的纤维进行真空烧结;6)最后退火,获得Yb3+掺杂的透明镥铝石榴石透明陶瓷光纤。本发明制备的透明陶瓷光纤具有较低的光学损耗,可用于~1微米近红外激光输出和~1微米近红外光学信号放大。该方法采用注浆成型工艺,相对现有技术,步骤简单,成本较低。采用粉体烧结工艺,工作温度较低,能耗较小。
本发明涉及TiCN基金属陶瓷及其制备方法,属于金属陶瓷制备技术领域。本发明解决的技术问题是提供一种在高温烧结下陶瓷相晶粒可控的TiCN基金属陶瓷的制备方法,该方法包括混料、干燥、压制和无压烧结,通过调节混合粉料中TaC、NbC的含量可有效抑制高温烧结过程中TiCN基金属陶瓷中陶瓷相晶粒的粗化长大,得到细晶TiCN基金属陶瓷。本发明方法所需设备简单,操作快捷,制备周期短,成本低,可实现真空烧结制备高硬度、高强度TiCN基金属陶瓷。
本申请涉及一种高光学性能的荧光透明陶瓷的制备方法,其包括以下步骤:(a)对氧化钇、氧化铝和氧化铈的金属氧化物粉体煅烧;(b)将煅烧后的金属氧化物粉体及碳酸钙粉、四乙氧基硅烷放入球磨罐中,同时加入球磨介质,进行球磨,得到浆料;(c)对浆料进行干燥处理,并将干燥后的粉体碾碎,过筛后,得到分散均匀的粉体,再次进行煅烧,冷却之后再次过筛,得到最终粉体;(d)将最终粉体加入模具内,干压成型之后,再冷等静压,得到素坯;(e)烧结素坯;(f)对烧结后的素坯进行退火、加工,得到荧光透明陶瓷。本申请比一步真空烧结的陶瓷外观优异,得到了一种光学质量优异的荧光透明陶瓷。
本发明公开了一种稀土掺杂颗粒增强钢铁基复合材料的制备方法,属于复合材料制备技术领域。本发明通过加入陶瓷颗粒、基体粉末及稀土元素,采用球磨混粉、压制成型、真空烧结以及真空吸附成形等技术制备钢铁基复合材料;其中,稀土元素以少量单质形式掺杂于粉料中。本发明所述方法采用真空吸附可以制备形状各异的材料,且采用真空吸附可以有效防止成形过程材料被氧化,浇铸完成后,可以防止金属液体回流,造成材料整体缺陷。采用粉末冶金预烧结结合真空吸附浇铸成形,制备出的稀土掺杂颗粒增强钢铁基复合材料硬度值较高,表面质量好,同时解决了传统粉末冶金致密性不足的问题,使材料的的耐磨性能、硬度大大提高。
本申请公开了一种高可见光透过率氧化钇透明陶瓷的制备方法,采用高纯Y2O3原料,经球磨、干压成型以及冷等静压成型得到素坯,然后依次经过真空烧结、热等静压烧结和氢气气氛热处理。本发明通过氢气气氛热处理,相比于传统空气或氧气热处理工艺,具有更高的可见光透过率。陶瓷在可见光透过率高达80%。
本发明公开了一种钇改性Mo2NiB2基金属陶瓷及其制备方法,将钼粉、镍粉、硼粉以及稀土钇粉按照一定比例进行配料,然后进行球磨,球磨后的混合浆料经干燥后过筛造粒;将过筛后的混合物料装入模具压制成型,经真空烧结后炉冷,得到一种钇改性Mo2NiB2基金属陶瓷。本发明原料资源丰富,制备工艺简单,生产成本较低,所获得的钇改性Mo2NiB2基金属陶瓷具有较高的硬度、强度,同时具有优良的耐磨性。
本发明公开了一种用于废水深度处理的微孔过流臭氧催化陶瓷膜及其制备和应用方法,属于废水深度处理用催化剂技术领域。本发明的催化陶瓷膜以经过预烧和研磨的400~600目Al2O3粉末与硝酸镝、硝酸钼、硝酸锰的催化成分负载溶液混合,以羟丙基甲基纤维素、聚乙二醇和硝酸镝、硝酸钼、硝酸锰水溶液为成型助剂,经和膏、炼泥、挤出成型、干燥、真空烧结等工序而成。本发明制备的微孔过流臭氧催化陶瓷膜创新性地将微孔过流与臭氧催化氧化技术进行耦合,通过外部压差作用使废水以较高流速通过陶瓷膜的微米级孔道,有效地促进了臭氧及有机物污染物与催化剂表面的传质效率,同时催化剂内部发达的微米级孔道极大增加了单位体积催化模块的有效催化面积。
本发明提供一种TiB增强医用多孔钛的制备方法,首先将Ti粉、TiB2粉、造孔剂NH4HCO3按一定配比进行称量;然后在氩气保护下用行星式球磨机混合均匀;再利用放电等离子烧结炉进行真空烧结;最后经真空热处理后得到一种低弹性模量、高强度、孔隙率适中的TiB增强医用多孔钛。本发明将多孔结构设计与原位自生TiB增强相结合,可在保持与人体骨相近的弹性模量、维持合适孔隙率的同时显著提高多孔钛的力学性能,且少量添加TiB无生物毒性。该发明制备方法和工艺简单可行,可获得孔隙率可控(10~60%)、低弹性模量(10~20GPa)、高强度(200~1400MPa,添加TiB比未添加TiB同等参数下强度提高1~3倍)、良好生物相容性的多孔钛,是一种极具前景的生物医学领域硬组织修复及替换用多孔材料之一。
本发明公开了一种均匀受热的真空炉,包括真空炉外壳,真空炉外壳上安装有炉盖,真空炉外壳内安装有加热室,所述加热室一端连通有导气管,另一端形成入料口,加热室内成形有螺纹;炉盖上安装有与入料口配合微波加热器;微波加热器通过微波溃口与入料口连通,微波溃口中安装有耐压玻璃;所述导气管上安装有第一过滤网;导气管轴接有连通管,连通管连通有真空泵。本发明结构简单使用方便,可以对粉末物料进行真空烧结时进行上下和左右的搅动,从而使得粉末受热更加均匀,烧结合格率高,提高了产品品质。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!