一种用含锂的纳滤产水制取碳酸锂和盐钾联产的工艺,包括以下步骤:(1)将硫酸镁亚型盐湖卤水经纳滤膜分离,得含锂的纳滤产水;(2)将含锂的纳滤产水蒸发结晶,得成品卤水;(3)将成品卤水经强碱性阴离子交换树脂吸附除杂,得净化卤水;(4)将净化卤水蒸发水分,得氯化钠精制盐和盐钾共饱卤水;(5)将盐钾共饱卤水冷却结晶,得到工业级氯化钾和富锂卤水;(6)往富锂卤水中加入碳酸盐溶液,在80~100℃沉淀结晶,得成品工业级碳酸锂。本发明对硫酸镁亚型盐湖卤水进行卤水调节,简化盐田工艺,避免硫酸盐矿物的结晶析出,改善钾盐加工工艺,通过进一步吸附除杂,可实现碳酸锂和盐钾联产。
本发明涉及一种碳纳米管脲醛树脂碳包覆球形微晶石墨作为锂离子电容器负极材料的应用,本发明中锂离子电容器包括正极片、负极片、隔膜和电解液,其中负极片所用的负极材料为微晶石墨经过预处理、整形、提纯和干燥步骤处理得到的球形微晶石墨材料,然后以此为原料制备锂离子电容器。该锂离子电容器在0.1C倍率下充放电时,首次充放电循环充电容量为396 mAh/g,0.1C首次效率高达96.5%。本发明所使用的原料廉价、生产周期短,具有明显的社会和经济效益、易于实现工业化生产。
本发明公开了含ZIF67衍生复合碳材料锂硫电池正极材料及制备方法、含其的正极极片和锂硫电池。制备方法包括:以ZIF67为前驱体,经高温烧结碳化为具有金属Co颗粒嵌入的氮掺杂分级孔碳材料,采用高温硫化方法将复合多孔碳材料中的Co硫化为CoS2。锂硫电池正极活性材料的制备方法包括:按质量比1:4称取上述复合碳材料和单质硫,采用熔融法将单质硫熔渗到多孔碳材料内部,正极极片由质量比为80:10:10的锂硫电池正极活性材料、超导碳、粘结剂LA133制成。锂硫电池主要由上述正极极片、隔膜、电解液、金属锂负极极片组装而成,得到的锂硫电池具有优异的循环性能和倍率性能。
本发明公开了一种锂离子电池正极材料磷酸亚铁锂的制备方法。将三价铁源化合物、磷源化合物和金属锂按铁:磷:锂元素的摩尔比=1:1:1.1~1.9混合后置于密闭容器中,加入水控制水溶液中水与锂的摩尔比为1:1~10:1;在室温下搅拌0.1~20小时,金属锂与混合物中的水反应生成锂离子并放出氢气同时产生大量的热能,氢气将三价铁离子还原成亚铁离子,亚铁离子与锂离子及磷源化合物生成无定形态磷酸亚铁锂;经烘干后在400~700℃的温度下煅烧2~20小时,制得磷酸亚铁锂成品。本发明合成温度低,合成周期短,条件控制简便,合成成本低、合成的磷酸亚铁锂颗粒细小并且粒径分布均匀,离子导电性和电子导电性明显得到提高,具有良好的大电流(1C)放电性能。
本发明公开了一种钛酸锂负极材料、制备方法、负极极片及锂离子电池,钛酸锂负极材料包括固体量、分散剂以及分散介质;固体量与分散介质质量比为(0.2‑0.6):(0.4‑0.8);固体量包括锂源、钛源以及碳纳米管;锂源、钛源以及碳纳米管与分散剂质量比为1:(2‑2.6):(0.005‑0.04):(0.005‑0.04)。制得的钛酸锂负极材料应用于负极极片,制成锂离子电池时,其克容量高,倍率性能优越;适合工业化生产,应用前景广阔。
本发明涉及一种用于预测锰酸锂‑钛酸锂电池剩余生命周期的方法。该方法先对某种型号规格的锰酸锂‑钛酸锂电池,进行指定次数的循环后,进行电性能检测;然后拆解,获得锰酸锂‑钛酸锂电池的正极材料、负极材料、隔膜和电解液中的一种或多种,并进行材料学检测和/或分析化学检测,建立关于锰酸锂‑钛酸锂电池电性能指标、材料学参数和/或分析化学参数与循环次数之间对应关系的标准数据库;再取待测锰酸锂‑钛酸锂电池同样进行拆解并进行相关检测,进行比对,预估电池的剩余的循环次数。本发明综合锰酸锂‑钛酸锂电池的电性能测试、电池组分的材料学检测及分析化学检测等手段,提出一套相对准确的评价锰酸锂‑钛酸锂电池性能衰减程度并预测剩余使用寿命的方法,为锰酸锂‑钛酸锂电池的梯次利用提供更为准确的评判依据。
一种钛酸锂负极片及其制备方法、锂离子电容器、电池,钛酸锂负极片制备包括:配制负极浆料和获取负极集流体基体;将负极浆料涂布在负极集流体基体表面,烘干,形成活性材料浆料层;涂有负极浆料层的负极集流体基体经碾压、裁剪后,干燥后得到钛酸锂负极片,负极浆料的制备包括以下步骤:1)3~8重量份粘结剂、260~330重量份蒸馏水混合均匀后,加入导电炭黑混合后,搅拌1.5h~2.5h;2)向步骤1)制得的混合溶液中加入42~48重量份的钛酸锂,搅拌0.5h~1h;3)向步骤2)制得的混合溶液中加入40~46重量份的钛酸锂,搅拌0.5h~1h;4)调节浆料的布氏粘度至1500~2800cps,高速搅拌6~8小时;锂离子电容器、电池具有前述钛酸锂负极片。
本实用新型涉及一种锂电池隔膜干燥装置及锂电池隔膜制造系统。锂电池隔膜干燥装置包括支架;引导辊,所述引导辊装设于所述支架上,且所述锂电池隔膜绕过所述引导辊,所述引导辊用于促使所述锂电池隔膜沿预定方向循序前移;热水循环部件,包括热水器及与所述热水器连通的热水管;所述引导辊为中空结构,且两端分别开设有进水口和出水口,所述热水管分别与所述进水口和所述出水口连接。本实用新型提供的锂电池隔膜干燥装置及锂电池隔膜制造系统能够使锂电池隔膜表面的水能够迅速被蒸发干燥且干燥均匀可靠,不易留下水渍,锂电池隔膜外观品质好。
本发明公开了一种全固态锂硫电池复合正极材料及全固态锂硫电池和制备方法,该复合正极材料是由导电聚合物单体通过原位聚合生成相应的导电聚合物包裹在单质硫或单质硫/碳材料混合物表面,再通过高温处理得到的导电聚合物/硫复合正极材料或导电聚合物/硫/碳复合正极材料;制得的复合正极材料具有较高导电性,能将硫很好固定在正极区域,进一步与有机-无机杂化聚合物固体电解质膜和/或Li2S-P2S5无机固体电解质及金属锂负极制成全固态锂硫电池,制得的全固态锂硫电池具有高放电比容量、稳定的循环性能和较高安全性能,且复合正极材料的制备方法简单、工艺条件温和,成本低,满足工业生产要求。
本发明公开了一种全固态锂硫电池用夹层及全固态锂硫电池,夹层由固体电解质和导电材料构成,全固态锂硫电池包括硫正极、固体电解质膜和金属锂负极,且在硫正极和固体电解质膜之间设有所述夹层;夹层同时具有导电性与导锂性,其设置在全固态锂硫电池的正极与固体电解质之间,可使活性物质硫充分反应,提高活性物质硫的利用率,同时该夹层可以抑制多硫化物的穿梭,提高锂硫电池的库伦效率以及循环寿命,从而获得高容量发挥、稳定循环性能以及高安全性能的全固态锂硫电池。
本发明公开了一种锂硫电池用改性隔膜的制备方法、改性隔膜以及具有多层该改性隔膜的锂硫电池,该制备方法包括以下步骤:仅将导电剂和粘结剂按质量比1:1-5:1混合均匀,然后分散到溶剂中;通过机械搅拌或超声分散获得分散均匀的涂层浆料;将所得涂层浆料涂覆于一隔膜基体表面,真空干燥,即得锂硫电池用改性隔膜。采用多层通过该方法所制备的改性隔膜的锂硫电池具有良好的电化学性能,并且价格便宜,适合于工业化生产。
本发明涉及一种盐湖卤水镁锂分离及富集锂的方法和装置。用阴离子交换膜将电渗析装置隔成锂盐室和卤水室两个区域,卤水室内充入盐湖卤水,锂盐室内充入不含Mg2+的支持电解质溶液;将涂覆有离子筛的导电基体置于卤水室中,作为阴极;将涂覆有嵌锂态离子筛的导电基体置于锂盐室中,作为阳极;在外电势的驱动下,使卤水室卤水中的Li+嵌入到离子筛中形成嵌锂态离子筛,锂盐室中的嵌锂态离子筛将Li+释放到导电溶液后,恢复为离子筛;卤水室中的嵌锂后液排出,重新加入盐湖卤水,两室电极交换放置,重复循环操作。高效实现锂与其他离子的分离,同时获得富锂溶液。本方法流程短,操作简单,生产成本低,可连续操作,易于工业化应用。
本发明提供了一种磷酸铁锰锂复合材料的制备方法,包括以下步骤:A)将锂源、铁源、锰源和磷源在溶剂中按照摩尔配比(0.8~1.01):x:(1‑x):1混合,调节pH值反应后得到磷酸铁锰锂中间体;B)将所述磷酸铁锰锂中间体热处理,得到磷酸铁锰锂前驱体;C)将所述磷酸铁锰锂前驱体、锂源、碳源、水和添加剂混合,再依次经过研磨、干燥与热处理,得到磷酸铁锰锂复合材料;所述锂源为所述磷酸铁锰锂前驱体的0.1~2wt%。本申请提供的磷酸铁锰锂复合材料的制备涉及两次补锂,从前驱体制备到成品制备,依靠锂离子的作用使磷酸铁锰锂材料的粒子维持在纳米尺寸,提高了磷酸铁锰锂复合材料的电化学性能。
本发明公开了一种采用硫酸锂粗矿制备电池级碳酸锂的方法,包括以下步骤:1)两级浆洗;2)粗碳酸锂的制备;3)进一步浆洗+碳化;4)电池级碳酸锂的制备。在本发明中,一级浆洗采用氯化锂母液和硫酸钠溶液进行浆洗,可以降低硫酸锂的损失,提高回收率;二级浆洗采用含碳酸锂的再循环溶液L4作为浆洗液,溶解可溶性的钙镁离子的同时,回收再循环溶液中的锂;二级浆洗固液分离的滤液L5含锂,返回一级浆洗补液,溶解可溶性杂质离子的同时,降低一级浆洗锂的损失;在本发明中,二级硫酸锂精料采用制芒硝母液L15溶解,溶解过程析出NaCl混盐后沉锂;在本发明中,粗碳酸锂采用含碳酸锂的再循环溶液浆洗,减少系统外排的同时,又可以提高锂的收率。
本发明公开了一种从磷酸锂中综合回收锂和磷的方法。本发明的方法实现了对磷酸锂材料中的磷和锂的高效综合回收的目标,对于锂的回收率高达98.5%以上,碳酸锂的纯度达99%以上,同时对磷的回收率达96%以上,磷酸一氢盐的纯度达95%以上。本发明的方法对磷酸锂的纯度要求较低,可实现在磷酸锂纯度为30%~95%的范围内对其中的磷和锂的高效综合回收,并且局限性小,同时本发明的回收方法条件温和,反应过程中无气体产生,也不会放出大量热,因而污染小,对设备要求低,整个反应易于控制,且得到的副产物为磷酸氢盐,利用价值高,整个回收成本低,有利于进行大规模的实际应用。
本发明提供了一种负极预锂化补锂容量的计算方法及其应用,通过该公式的计算,可以精准的计算出负极所需的补锂量,使得循环过程中正极单位面积实际脱嵌锂容量与正极单位面积可接收脱嵌锂容量相等,此时正极的容量可完全发挥出来,实现精确把握负极补锂预锂化的程度,补充首次充放电过程中消耗的正极活性锂,提高锂离子电池的容量密度、能量密度。
本发明公开了一种合成烷基锂化合物所产生的 含锂废液处理方法, 在0.01~0.03MPa氮气压力保护和0~60℃ 的温度下将含锂废液进行水解, 经盐酸两次调pH值和两次过滤 后, 滤液按每molLiCl加1.00~1.03molNa2CO3, 在 90~95℃的温度下反应制得Li2CO3产品, 或将滤液脱 水得LiCl结晶后电解得金属锂, 解决了现有技术中锂渣难以回收或回 收工艺不稳定、不安全等问题, 具有工艺简单、操作方便、安全可靠、 回收率高及产品质量好等优点, 广泛适用于合成烷基锂工艺应用。
本发明属于锂金属电池技术领域,尤其涉及一种金属锂带表面处理装置,包括按金属锂带传送方向依次设置的放卷组件、第一刷辊对、第二刷辊对和收卷组件;第一刷辊对表面设有若干第一刷毛;第二刷辊对表面设有若干第二刷毛;收卷组件用于收卷金属锂带。本发明提供的金属锂带表面处理装置,金属锂带依次经过第一刷辊对和第二刷辊对进行机械抛光,第一刷辊对用于去除金属锂带表面的钝化层,第二刷辊对用于进一步去除金属锂带表面的钝化层,并去除金属锂带的表面缺陷增加金属锂带表面的平整度,便于后续在金属锂带的表面附着均匀的保护膜,提高保护膜的保护效果,防止锂枝晶的产生,表面缺陷去除后能够形成优越的SEI膜,提高锂金属电池的循环性能。
本发明公开了一种由大蒜或洋葱制备锂电池的方法,该方法是以大蒜和/或洋葱为原料,将大蒜和/或洋葱表皮通过高温炭化得到作为电极导电材料的活性炭;将大蒜和/或洋葱的肉质通过乙醇提取得到作为电极粘结剂和/或液态电解质材料的精油;将精油进一步与聚甲基含氢硅氧烷进行加成反应得到作为固体电解质材料的改性聚硅氧烷,或者进一步交联固化得到作为电极活性材料的固化物;将以大蒜和/或洋葱为原材料制得的所述活性炭、精油、改性聚硅氧烷、固化物中的一种或几种配入其它制备锂电池的基本材料制备成固态或液态锂电池;该制备方法简单、成本低,制得的锂电池容量大、循环性能好,扩大了锂离子电池材料的选择范围和应用领域。
本发明公开了一种改性锂离子电池富锂锰基正极材料,是以富锂锰基正极材料为基体,在基体的表面包覆有硼酸镁。本发明的制备方法,包括以下步骤:先将富锂锰基正极材料加入硝酸镁溶液中,再在水浴、搅拌的条件下逐滴加入H3BO3溶液,形成凝胶;最后将凝胶烘干、研磨、煅烧,即得到硼酸镁包覆的富锂锰基正极材料。本发明首次将硼酸镁用于对锂离子电池正极材料进行改性,且使得材料电化学性能明显改善。本发明制得的硼酸镁包覆的富锂锰基正极材料在1C首次放电克容量可高达180mAh·g?1,经过100次循环后,容量保持率能够达到98.3%;显著提高了其倍率性能,尤其是10C下的倍率性能。
本发明公开了一种钛酸锂负极材料的制备方法及锂离子电池,其中钛酸锂负极材料的制备方法为将锂盐与二氧化钛按锂原子与钛原子的摩尔比为4:5混合均匀,放入密封容器中抽真空,加热到800‑1000℃,持续通入乙炔气体3‑8小时,自然冷却,得到与碳纳米混合均匀的钛酸锂负极材料,所述锂盐为氢氧化锂和碳酸锂的一种,并以此作为锂离子电池的负极,制备锂离子电池。本发明通过在钛酸锂的生产过程中,生成碳纳米,使两者充分混合均匀,不仅提高了钛酸锂的导电性,降低了过电位,使电解液不分解,从而解决了电池鼓包的问题,而且所得到的锂离子电池的导电性显著提高、充电电压降低。
本发明公开了一种富锂锰酸锂正极材料的制备方法,包括以下步骤:(1)将二氧化锰与氢氧化锂混合后进行焙烧,使二氧化锰与氢氧化锂反应生成Li2MnO4;(2)将步骤(1)所得Li2MnO4溶解,得Li2MnO4溶液;将氢氧化锂溶于所述Li2MnO4溶液中,再加入可溶性锰盐溶液进行氧化还原反应,得到氧化还原产物;(3)将步骤(2)所得的氧化还原产物进行烧结,得到富锂锰酸锂正极材料。该制备方法通过液相化学反应制备富锂层状化学二氧化锰前驱体,可以使锂、锰达到分子级别的混合效果,锂锰配比更均匀。通过控制锰盐溶液滴加速度,可以控制产品粒径和形貌,产品可以满足生产高倍率锂离子电池正极材料的要求。
本发明属于锂离子电池技术领域,尤其涉及一种金属锂复合负极材料及其制备方法及锂离子电池,包括金属锂导电层,所述金属锂导电层含有立体结构材料,所述立体结构材料用于为金属锂提供附着位点并包覆金属锂。本发明的一种金属锂复合电极材料有效避免锂与电解液进行接触,有效减低电解液消耗,引导锂离子的均匀沉积,抑制锂枝晶生成。
一种锂离子电池正极材料用锰酸锂前驱体的制备方法,包括以下步骤:(1)将二氧化锰与锂化合物按Li/Mn摩尔比为0.3~4.0的比例加入水中配制成反应物料浆;(2)将步骤(1)配制的反应物料浆放于反应器中,一边搅拌,一边升温至80-300℃,搅拌恒温反应0.2~16小时;(3)将步骤(2)所得反应产物料浆进行液固分离,即得无定形锰酸锂前躯体。本发明具有如下特点:(1)在水溶液中通过二氧化锰与锂化合物之间的反应合成无定形锰酸锂前驱体,所得产物的组成与粒度分布均匀,形貌规整,化学活性好,易于后续热处理过程中材料的结构、粒度和形貌的有效控制;(2)所用原材料价廉易得,利用率高,制备成本低;(3)制备过程无三废排放,环境效益好;(4)方法简单,工艺流程短,易实现产业化。
本发明公开了一种从废旧磷酸铁锂材料中回收磷铁合金和锂化合物的方法,该方法包括以下步骤:将废旧磷酸铁锂材料和过量碱金属氢氧化物溶液混合搅拌,过滤后将除铝后料烘干后得到磷酸铁锂粉料;通入还原性气体或加入还原性固体,加热进行还原处理,磷酸铁锂分解后转化为磷铁合金和锂的化合物;做球磨得到活化后的还原粉料,进行磁选分离,分别得到磷铁合金和锂化合物;磷铁合金再次做磁选分离,得到提纯的磷铁合金;锂化合物也做进一步磁选分离,得到的尾矿为富集提纯后的锂化合物。采用本发明的方法回收废旧磷酸铁锂材料,所得磷铁合金产品的铁品位可达73‑80%,磷含量可达18‑26%。锂的化合物中,锂含量高达15%以上。
一种锂电池正极材料超薄包覆层,其成分为Li-Ti-O组成的钛酸盐;且包覆层均匀致密,其厚度为0.3~30nm。一种核壳型包覆结构锂电池正极材料,包括内核正极活性物质和前述超薄包覆层,包覆层中Ti与内核正极活性物质中过渡金属元素的摩尔比为0.01%~3%。该锂电池正极材料的制备方法包括:将锂盐及含钛化合物溶于有机溶剂,并加入内核正极活性物质,使其充分浸润;再加热去除有机溶剂,将所得的干燥粉体置于干燥的空气中静置,使其缓慢可控地与空气中的水分子发生原位水解,将得到的中间粉体置于有氧环境下煅烧,制得锂电池正极材料。本发明可抑制锂电正极材料活性物质与电解液间的副反应,提高产品的倍率性能高和循环性能。
本发明提供了一种软包装锂离子电池原位补锂及电池制造方法,包括以下步骤:步骤1:正极片和负极片的制备;步骤2:将正极片、负极片和隔膜制成电池卷芯或极片集束,在电池卷芯或极片集束外包裹表面包有隔离膜的富锂辅助电极,组装成软包电池;步骤3:向步骤2得到的软包电池中注入电解液,一次封口后进行预锂化;步骤4:预锂化完成后取出富锂辅助电极,二次封口后进行活化,活化后进行抽真空处理和三次封口。本发明通过预设富锂辅助电极,实现了对锂离子电池负极的原位预锂化,从而提升锂离子电池的能量密度。并且预锂化过程中的锂主要来源于富锂辅助电极上的预锂化剂,对电解液的影响很小,预锂化过程简单、安全、高效。
一种利用NaCl与碳酸锂混盐浮选提取碳酸锂的方法,其包括以下步骤:(1)将NaCl和碳酸锂的混盐进行磨矿;(2)将步骤(1)得到的矿浆物料送入浮选机,调节pH值至碱性,加入碳酸锂捕收剂,用量200g/t~350g/t矿浆,搅拌2-4分钟后进行充气刮泡浮选;(3)将步骤(2)得到的碳酸锂粗选精矿进行1~2次精选,过滤、烘干,得到工业级碳酸锂粗产品。本方法采用常温浮选工艺,能耗低,流程简单,所获得的碳酸锂产品质量好、收率高,所用浮选药剂无毒无污染,可实现碳酸锂低成本规模化生产。
磷酸铁锂电池废料浸出锂液增浓的方法,涉及一种低浓度锂液非蒸发增浓的工艺。其特殊在于:先将含锂溶液加入酸液,然后将磷酸铁锂物料以质量液固比3‑5:1的比例缓慢加入到酸液中,再按磷酸铁锂质量的0.1‑1.2倍加入氧化剂,保温搅拌10‑90分钟,过滤含锂溶液,然后将过滤后的含锂溶液进行增浓:在开启搅拌条件下,将过滤后的含锂溶液加入酸液,并按质量液固比3‑5:1的比例加入磷酸铁锂物料,同时按磷酸铁锂质量的0.1‑1.2倍加入氧化剂,再过滤含锂溶液,将上述增浓步骤重复多次,使溶液中的锂浓度增加到10‑80g/L。本发明创新非蒸发锂液增浓工艺,解决了现有技术低浓度锂液增浓能耗高的问题,为工业化利用磷酸铁锂电池废料再生锂盐提供了切实可行的办法。
本实用新型属于锂金属电池技术领域,尤其涉及一种锂金属电池负极片,包括:锂金属层;钛酸锂层,设置于所述锂金属层的至少一表面。本实用新型提供了一种锂金属电池负极片,在锂金属层的表面设置一层钛酸锂层,由于钛酸锂的嵌锂电位在1.5V左右,比锂金属的0V高。因此,锂金属电池在充电的时候会优先在钛酸锂层嵌锂,嵌锂后会提高负极的温度,因此,有利于提升锂金属电池的低温充电性能。另外,由于锂金属层表面有一层高嵌锂电位的钛酸锂层,当锂在锂金属表面长出锂枝晶时,锂枝晶中的锂可以被钛酸锂消耗掉,可以抑制锂枝晶的生长。从而提高锂金属电池的安全性能和循环性能。
中冶有色为您提供最新的湖南有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!