合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 功能材料技术

> 基于硅酸锂-超细颗粒的微交联乳液固壁剂及制备方法与流程

基于硅酸锂-超细颗粒的微交联乳液固壁剂及制备方法与流程

462   编辑:中冶有色技术网   来源:中石化胜利石油工程有限公司中石化胜利石油工程有限公司钻井工艺研究院  
2023-10-31 15:23:44
一种基于硅酸锂-超细颗粒的微交联乳液固壁剂及制备方法与流程

1.本发明涉及一种用于石油钻井泥页岩地层防塌钻井液用化学固壁剂,具体涉及一种基于硅酸锂-超细颗粒的微交联乳液固壁剂及制备方法。

背景技术:

2.硅酸盐用于钻井液作为防塌剂,在国外应用较早,早在上世纪三十年代,美国即对高浓度硅酸盐钻井液进行深入研究,并进行现场应用。早期硅酸盐体系主要有以下缺点。一是流变性难以控制,主要通过置换稠浆的方式进行;二是碱性太高,对作业人员的健康会造成一定的不良影响,同时还有可能造成机泵润滑脂脱除的不良影响。至六十年代早期,经过对硅酸盐在理论和实践上都有了较深入系统的认识后,人们才逐渐地认识到稀硅酸盐钻井液的防塌作用同样显著,至此,稀硅酸盐钻井液体系才得到较广泛的应用。但是,硅酸盐钻井液存在的流变性、碱性难题并没有完全解决,所以,在一段时间内,由于新型防塌剂的不断出现,硅酸盐逐渐陷于沉寂,没有得到更广泛应用。上述所指的硅酸盐主要是硅酸钠、硅酸钾钠、硅酸钾的水剂和粉剂。随着近年来页岩油气开采的日益扩大,摒弃传统油基钻井液,采用环境友好的水基钻井液开采页岩油气,成为行业的迫切需求,硅酸盐重新回到人们的视线之内。

3.以往,研究人员在针对各种不同复杂问题,开发出不同硅酸盐钻井液体系,其中最具代表性的硅酸盐钻井液体系可归纳为以下几种:

4.一种是硅酸盐/聚合物钻井液体系,即将硅酸盐直接加入聚合物钻井液,典型配方:a.粘土粉5%~7%+硅酸盐5%~7%+cmc0.7%~1%+非水解pam0.2%~0.5%。b.基浆+0.35%聚阴离子纤维素+0.2%xc+0.33%部分水解聚乙烯乙酸酯(pva)+0.33%硅酸钾+0.33%碳酸钾。这两套体系主要是依靠硅酸盐的胶结特性,把多个粘土颗粒胶结起来,起到稳定井壁的作用。二是硅酸盐凝胶钻井液,通过把硅酸盐与三聚磷酸钠、煤碱剂复配,作为一种降粘剂,用于具有凝胶特性的钻井液体系。该配方典型性能:密度1.12~1.13kg/l,漏斗粘度40~60s,ph值10~11,硅酸盐加量为0.5%~1%。可见钻井液具有较高的ph,硅酸盐加量仍较低。三是正电胶硅酸盐钻井液,含有mmh正电胶、硅酸盐、增粘剂、降滤失剂和除氧剂等处理剂的钻井液,其静切力高达10~40pa,因此钻井液体系具有凝胶性质而对地层裂缝起了封堵作用,防止了钻井液漏失,从而保护了储层。四是无固相硅酸盐钻井液,通过植物胶改善流变性,硅酸盐的胶结特性,有利于第四系松散地层和二叠、石炭以及泥盆系破碎性地层井壁稳定。上述研究及应用所指的硅酸盐主要是硅酸钠、硅酸钾钠、硅酸钾的水剂和粉剂。

5.近年来,专利文献(授权公告号:cn105062437b)介绍了一种抗240℃高温的水包油乳化钻井液,其流型调节剂为纳米蒙脱石和硅酸锂镁混合制得,加量为1.5%。蒙脱石在水中分散形成网架结构,硅酸锂镁在水中形成三维空间的胶体结构,两种物质复配主要是为钻井液提供凝胶强度,即钻井液动切力,调整钻井液的流型,未涉及井壁稳定问题。

6.本发明提及的硅酸锂是硅酸盐的一种,由于锂离子半径比钠、钾离子半径小得多,

因而硅酸锂水溶液还具有一些独特的性能:硅酸锂水溶液的性能与二氧化硅胶粒大小密切相关,如sio2粒子为1mμ左右,则产品清晰透明、粘度低。硅酸锂水溶液允许模数高达8,sio2含量20%,仍然粘度低,稳定性好。由于硅酸锂具有一些特殊的性质,所以近年来越来越受到各国的重视。美国是最早研究硅酸锂制造的国家,生产技术几乎为其垄断。到了上世纪末,日本对硅酸锂的研究不论是质量,还是应用范围都有超美之势。我国在这方面的研究才刚刚起步。

7.本发明针对传统硅酸盐钻井液体系流变性差、失水大、碱度高的缺点,结合泥页岩地层微裂缝发育易破碎、泥饼不易形成的特点,通过硅酸锂、纳米颗粒复合,引入强极性稳定剂,并进行微交联,制备一种针对泥页岩地层防塌的乳液化学固壁剂。该化学固壁剂通过添加于水基钻井液,打开地层时迅速在井壁上形成封堵层、对破碎层进行胶结,维持近井眼岩层强度,满足安全钻进需要。

技术实现要素:

8.本发明的目的是克服现有技术中的不足,提供一种基于硅酸锂-超细颗粒的微交联乳液固壁剂及制备方法,其技术方案如下:

9.一种基于硅酸锂、超细颗粒的微交联乳液化学固壁剂,按质量百分比计算如下组分含量:硅酸锂0.1~27%、超细颗粒1~55%、稳定剂0.1~25%、分散剂0.1~5%、交联剂0.1~5%、余量为水。

10.本发明技术方案所述的硅酸锂为多硅酸锂水溶液,水溶液浓度1~27%、模数4.8

±

0.1、25℃粘度5~20mpa.s、ph值11.5

±

0.5,硅酸锂组分含量为水溶液折算干剂含量。

11.本发明技术方案所述的超细颗粒为超细碳酸钙、纳米碳酸钙、纳米二氧化硅、纳米纤维素、天然沥青粉,一种或多种复合。超细碳酸钙目数400~3000目、纳米碳酸钙(tem/sem)粒径<100nm、纳米二氧化硅粒径1~100nm、纳米纤维素平均长度400-600μm平均直径10-50nm、天然沥青粉200~400目。

12.本发明技术方案所述的稳定剂为聚乙烯醇、石蜡、聚乙二醇,一种或多种复合。聚乙烯醇聚合度>1700醇解度>50%、石蜡为52号以上、聚乙二醇分子量>800。

13.本发明技术方案所述分散剂为阳离子或非离子表面活性剂一种或多种复合,包括但不限于阳离子表面活性剂十八烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基苄基氯化铵(1277)、聚六甲基双胍盐酸盐(phmb)、双长链碳数为8-10的双烷基二甲基氯化铵(双8-10)、双癸基甲基羟乙基氯化铵(deq),非离子表面活性剂aeo-9、xl-80、jfc-2、apg0810、s23e7、s23e9、sa-7、sa-9。

14.本发明技术方案所述交联剂为硼酸、硼砂、过氧化苯甲酰(bpo)、过氧化二异丙苯(dcp)、二叔丁基过氧化物(dtbp),一种或多种复合。

15.本发明具体的制备方法,包括下面的步骤:

16.1)将稳定剂乳化分散或溶解于水中,具体步骤:将一定量去离子水置于加热釜,开启搅拌,将水加热至95℃,然后加入一定量分散剂,继续搅拌,加入一定量稳定剂,搅拌直至形成均匀的乳液或溶液。

17.2)将封堵材料与1)乳液(溶液)混合,并浓缩,具体步骤:将1)乳液(溶液)继续保温(60℃)并搅拌,将定量的封堵材料缓慢加入1)乳液(溶液),全部加入后继续保温搅拌,至体

系水分尽可能蒸发,注意不要固化。

18.3)将硅酸锂水溶液与2)混合。具体步骤:将定量硅酸锂水溶液缓慢加入2),保温(60℃)搅拌,至体系均匀,然后,降温至室温,保证水分满足流动需要。

19.4)将3)体系进行微交联,在室温搅拌条件下,加入定量交联剂,适当补充水分,保证体系流动性,形成终产品。

20.本发明的有益效果是:原硅酸盐钻井液仅限低固相、高ph值下使用,针对复杂地层井钻探高密度高固相条件下,往往不能使用或用量极低,效果有限。本发明将硅酸锂进行乳化、微交联,作为一种环保化学固壁剂,效果较好,可在复杂深井高密度高固相、泥页岩易破碎地层使用,极大扩宽了使用范围。

21.针对当前页岩油气开发中的泥页岩井壁稳定问题,替代传统硅酸盐钻井液及油基钻井液,通过添加处理剂的方式,避免水基钻井液大调整,封堵胶结泥页岩井眼,满足非常规油气泥页岩安全、环保钻进,实现非常规区块开发更好的经济、社会效益,性能稳定,存放3月未出现分层、凝固现象;产品对环境无任何不良影响,急性毒性ec50>30000;5%膨润土浆中加入3%产品,api滤失量由18ml降低至8ml,对2010-3μm2微裂缝岩心封堵率可达92.32%。在60℃(上游2mpa,下游1mpa),对现场页岩岩心进行压力传递实验,实验表明,随着该剂加入,孔隙压力传递速率大幅降低,证实产品对泥页岩具有优良的封堵性。

附图说明

22.图1是本发明性能测试结果示意图。

具体实施方式

23.下面结合实施例对本发明进行详细说明,但本发明的范围并不限于以下实施例。

24.实施例一:

25.将1000ml烧杯置于加热磁力搅拌器之上,加入水500ml,开启搅拌,至水温95℃。向水中加入称量好的十八烷基三甲基溴化铵10ml,然后缓慢撒入50g聚乙烯醇1799,搅拌直至完全溶解。降温至60℃后,将称量好的纳米二氧化硅150g、硅酸锂300ml加入聚乙烯醇溶液,继续搅拌至完全均匀。向上述体系,继续滴加称量好的过氧化苯甲酰10ml,加热搅拌至总体积500ml。所得产品组分含量约:硅酸锂15%、聚乙烯醇10%、纳米二氧化硅30%、分散剂2%、交联剂2%、水41%。

26.实施例二:

27.将1000ml烧杯置于加热磁力搅拌器之上,加入水500ml,开启搅拌,至水温95℃。向水中加入称量好的十六烷基三甲基氯化铵10ml,然后缓慢撒入80g石蜡52号,搅拌直至完全溶解。降温至60℃后,将称量好的纳米纤维素150g、硅酸锂400ml加入石蜡乳液,继续搅拌至完全均匀。向上述体系,继续滴加称量好的硼酸10g,加热搅拌至总体积500ml。所得产品组分含量约:硅酸锂20%、石蜡16%、纳米纤维素30%、分散剂2%、交联剂2%、水30%。

28.实施例三:

29.将1000ml烧杯置于加热磁力搅拌器之上,加入水500ml,开启搅拌,至水温95℃。向水中加入称量好的aeo-9(脂肪醇聚氧乙烯醚)10ml,然后缓慢撒入100g聚乙二醇800,搅拌直至完全溶解。降温至60℃后,将称量好的天然沥青粉150g、硅酸锂500ml加入聚乙二醇溶

液,继续搅拌至完全均匀。向上述体系,继续滴加称量好的过氧化二异丙苯(dcp)10g,加热搅拌至总体积500ml。所得产品组分含量约:硅酸锂25%、聚乙二醇20%、天然沥青粉30%、分散剂2%、交联剂2%、水21%。

30.性能测试:

31.(1)稳定性测量:取样品置于量筒,室温存放,观察是否分层或凝胶。

32.结果:实施例3个样品存放3月均未现分层、凝固现象,可流动。

33.(2)急性毒性检测:根据《gb/t15441-1995水质急性毒性的测定发光细菌法》检测体系毒性,记为ec

50



34.结果:三个实例的的ec

50

值分别为31000ppm、35000ppm和30700ppm,均为无毒。

35.(3)滤失量测定:首先,按照api标准测量5%膨润土浆滤失量,然后,加入3%实施例产品,再按照api标准测量滤失量。

36.结果如下:

[0037][0038]

(4)泥页岩封堵率测定:1)采用模拟地层水,定流(0.1ml/min)测压,待压力稳定后,测得p1;2)用待测钻井液定压、定时(4.2mpa、30min)污染岩心一端;3)撤掉钻井液,重新用模拟地层水,以1)流量,测得p2,封堵率r=(1-p1/p2)%。

[0039]

结果如下,可见实施例产品2、3的封堵率均达90%以上,实施例产品2达到92.32%。

[0040][0041]

(5)压力传递实验:采用水化-力学耦合模拟装置,设定测试温度60℃、上游压力2mpa,下游压力1mpa,采用典型泥页岩岩心,进行压力传递实验。

[0042]

结果请参阅图1,可见随着该剂加入,岩心孔隙压力传递速率大幅降低,尤以实施例2产品降低幅度最显著。技术特征:

1.一种基于硅酸锂-超细颗粒的微交联乳液固壁剂,其特征在于,其组分按质量百分比配比如下:硅酸锂0.1~27%、超细颗粒1~55%、稳定剂0.1~25%、分散剂0.1~5%、交联剂0.1~5%、余量为水。2.根据权利要求1所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂,其特征在于,所述的硅酸锂为多硅酸锂水溶液,其中,水溶液浓度1~27%、模数4.8

±

0.1、25℃粘度 5~20mpa.s 、ph值11.5

±

0.5,所述硅酸锂组分含量为水溶液折算干剂含量。3.据权利要求1所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂,其特征在于,所述的超细颗粒为超细碳酸钙、纳米碳酸钙、纳米二氧化硅、纳米纤维素、天然沥青粉中的一种或多种复合;其中,超细碳酸钙目数400~3000目、纳米碳酸钙(tem/sem)粒径<100nm、纳米二氧化硅粒径1~100nm、纳米纤维素平均长度 400-600 μm平均直径10-50 nm、天然沥青粉200 ~400目。4.据权利要求1所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂,其特征在于,所述的稳定剂为聚乙烯醇、石蜡、聚乙二醇中的一种或多种复合;其中,聚乙烯醇聚合度>1700醇解度>50%、石蜡为52号以上、聚乙二醇分子量>800。5.权利要求1所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂,其特征在于,所述的分散剂为阳离子或非离子表面活性剂一种或多种复合。6.根据权利要求5所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂,其特征在于,所述阳离子表面活性剂为十八烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基苄基氯化铵、聚六甲基双胍盐酸盐、双长链碳数为8-10的双烷基二甲基氯化铵、双癸基甲基羟乙基氯化铵中的一种或几种。7.根据权利要求5所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂,其特征在于,所述非离子表面活性剂为aeo-9、xl-80、jfc-2、apg0810、s23e7、s23e9、sa-7、sa-9中的一种或几种。8.根据权利要求1所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂,其特征在于,所述的交联剂为硼酸、硼砂、过氧化苯甲酰、过氧化二异丙苯、二叔丁基过氧化物中的一种或多种复合。9.一种基于硅酸锂-超细颗粒的微交联乳液固壁剂的制备方法,其特征在于,包括步骤:1)将稳定剂乳化分散或溶解于水中,得到乳液或溶液;2)将封堵材料混合于所述乳液或溶液,并浓缩;3)将硅酸锂水溶液混合于所述乳液或溶液;4)将所述乳液或溶液进行微交联,在室温搅拌条件下,加入定量交联剂,适当补充水分,保证体系流动性,得到固壁剂。10.根据权利要求9所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂的制备方法,其特征在于,所述步骤1)具体包括:将一定量去离子水置于加热釜,开启搅拌,将水加热至95℃,然后加入一定量分散剂,继续搅拌,加入一定量稳定剂,搅拌直至形成均匀的乳液或溶液。11.根据权利要求9所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂的制备方法,其特征在于,所述步骤2)具体包括:将所述乳液或溶液继续保温60℃并搅拌,将定量的

封堵材料缓慢加入所述乳液或溶液,全部加入后继续保温搅拌,至体系水分尽可能蒸发,注意不要固化。12.根据权利要求9所述的一种基于硅酸锂-超细颗粒的微交联乳液固壁剂的制备方法,其特征在于,所述步骤3)具体包括:将定量硅酸锂水溶液缓慢加入2),保温60℃搅拌,至体系均匀,然后,降温至室温,保证水分满足流动需要。

技术总结

本发明涉及一种用于石油钻井泥页岩地层防塌钻井液用化学固壁剂,具体涉及一种基于硅酸锂-超细颗粒的微交联乳液固壁剂及制备方法。其组分包括硅酸锂、超细颗粒、稳定剂、分散剂、交联剂、余量为水。其制备方法为是将稳定剂乳化分散或溶解于水中,再加入封堵材料混合浓缩,再加入硅酸锂水溶液混合。最后进行微交联,在室温搅拌条件下,加入定量交联剂,适当补充水分,保证体系流动性,形成终产品。本发明作为一种环保化学固壁剂,具有较好的环保性、封堵性,可在复杂深井高密度高固相、泥页岩易破碎地层使用。地层使用。地层使用。

技术研发人员:郑成胜 蓝强 张敬辉 徐运波 赵怀珍 李公让

受保护的技术使用者:中石化胜利石油工程有限公司 中石化胜利石油工程有限公司钻井工艺研究院

技术研发日:2020.07.22

技术公布日:2022/1/25
声明:
“基于硅酸锂-超细颗粒的微交联乳液固壁剂及制备方法与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
标签:
硅酸锂 固壁剂
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第五届中国浮选大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记