本发明公开了一种从废旧三元锂电池中分步沉淀回收镍、钴和锰的方法,包括如下步骤:1)预处理:将废旧三元锂电池正负极粉末煅烧备用;2)配置镍钴锰浸出液:将氢键供体、氢键受体及稀释剂配置成镍钴锰浸出溶液备用;3)锂分离处理:将煅烧后的粉末加水进行浸出,浸出完成后进行第一次过滤得到的滤液为碳酸锂溶液;4)镍钴锰分离处理:将第一次过滤得到的滤渣与镍钴锰浸出溶液混合进行反应,反应完成后进行第二次过滤得到镍化合物;将第二次过滤得到的滤液加钴沉淀剂沉淀反应后进行第三次过滤得到钴化合物和锰化合物。本发明实现锂镍钴锰的高效分步分离,回收率高,且避免强酸强碱等对设备的腐蚀,加工成本低。
本发明公开了一种铁矾渣钙化氯化挥发综合资源化利用的方法,属于有色金属工业固体废渣处理领域,处理方法包括:将铁矾渣破碎与煤粉、氯化剂一同混合,利用制粒机制出3‑7mm球团颗粒料,将球团颗粒干燥得到干燥球团物料;将干燥的球团物料置于温度1000‑1250℃中进行焙烧,得到氯化挥发烟尘和烧渣,完成铁矾渣钙化氯化处理。此发明能够回收多种有价金属,实现铁矾渣资源化和无害化处理。
本发明属于废旧电池回收技术领域,具体涉及废旧正极材料和槟榔渣联合处理方法,将槟榔渣在过热蒸汽气氛中进行预处理,随后再和废旧正极材料混合造球得球团,将球团进行焙烧处理得焙烧料,将焙烧料进行水浸处理,得到提锂液和水提渣。本发明能够实现锂的优先选择性提取,此外,还能够有效实现其他元素的高选择性回收,不仅如此,还能够联产高性能的槟榔基碳材料。
本发明公开了一种废旧锂电池正负极粉分离的方法。本发明利用正负极片的粘接剂性质差别分离正负极粉。正极片粘接剂为PVDF等脂溶性粘接剂,负极片粘接剂为SBR等水溶性粘接剂,所以用水浸泡正负极片,使负极片的水溶性粘接剂溶解,负极粉从负极片上脱落,而正极无影响,从而实现正负极粉的分离。本发明可得到三种极粉材料,即90%以上的纯净的正极粉和纯净的负极粉,以及10%以下的正负极粉混合料,纯净的正极粉和纯净的负极粉均可直接进行材料修复;能够实现正负极粉分离的大规模工业化生产,提高锂电池回收产物的经济价值。
本发明公开了一种废磷酸铁锂电池磷酸体系浸出液中回收磷酸二氢锂的方法,使用萃取剂对废磷酸铁锂电池的磷酸或磷酸及双氧水浸出液进行杂质元素的萃取,其中,杂质元素为Cu、Al、Fe元素,萃取剂为Cu、Al、Fe元素的酸性有机萃取剂经氢氧化锂皂化和有机溶剂稀释获得;经水油相充分混匀、静置、分层,获得含锂离子、磷酸根离子和磷酸二氢根离子的萃余液;对萃余液经蒸发浓缩获得磷酸二氢锂。本发明通过短流程、高效率的方式一步解决了磷酸铁锂电池的磷酸体系浸出液中Cu、Al、Fe等杂质高效去除过程的方法以及参数调控技术问题,同时获得了高的Cu、Al、Fe等杂质去除率和低的Li等有价元素损失率。
本申请提供一种高铜含量钼矿除杂的方法和高铜含量钼矿除杂与溶液闭路循环的方法,涉及冶金领域。高铜含量钼矿除杂的方法:将高铜含量钼矿在助浸剂辅助下进行有氧浸出,固液分离得到含铜浸出液和含钼浸出渣,含钼浸出渣经洗涤后得到高纯度钼精矿。高铜含量钼矿除杂与溶液闭路循环的方法:将高铜含量钼矿在助浸剂辅助下进行有氧浸出得到含铜浸出液和含钼浸出渣;含钼浸出渣经洗涤后得到高纯度钼精矿;含铜浸出液使用萃取剂进行萃取回收铜,萃余液用于进行有氧浸出。本申请提供的方法,通过控制工艺条件,在不破坏辉钼矿矿相结构的条件下,氧化浸出黄铜矿,能够有效将铜和钼分离,提升钼精矿品质并回收铜等有价金属的双重目标,具有良好的经济效益。
本发明公开了一种含咪唑硫酮单元的聚氨酯及其制备方法和应用。本发明的含咪唑硫酮单元的聚氨酯的结构式为:式中,R1为‑CH2CH2CH2CH2CH2CH2‑或R2为或n取23~47的整数。本发明的含咪唑硫酮单元的聚氨酯能够快速、高效、高选择性地吸附溶液中的Au3+,可以用于从电子工业废水中回收金元素,且其制备过程简单、原料成本低廉,适合进行大规模推广应用。
本发明一种萃取箱澄清室内三相污物的捕捞装置由框架、限位绳、操纵轮轴、运动控制绳、限位滑轮、运动滑轮、纱网构成。框架由外框和内框组成;外框的四根垂直杆的顶部端口分别设置有四个限位滑轮,底部端口分别设置有四个运动滑轮;限位滑轮通过滚动与限位绳接触,操纵轮轴通过滚动与运动控制绳接触;内框覆盖纱网构成捕捞网箱,并与外框构成完整的三相污物的捕捞装置。捕捞装置通过操纵轮轴带动运动控制绳,使其在萃取箱澄清室中移动,同时通过四个限位滑轮在限位绳上同步限位滑动,并借助覆盖在内框上面的纱网同步进行捕捉收集三相污物。本发明捕捞装置具有操作简便、安全性高、作业洁净、效率高、成本低廉等特点。
本发明公开了一种从硫化矿石中浸出铜、金和银的方法,a)将硫化矿原料研磨得到粒径为45‑106μm的浸出原料;b)将所述浸出原料与离子液体混合,得混合溶液;c)在所述混合溶液中加入一定量的氧化剂和络合剂在浸出槽中反应;浸铜时添加过量的所述氧化剂,不添加所述络合剂;浸金、银时所述氧化剂添加量为0.1‑5.0g/kg,所述络合剂的添加量为1.0‑50.0g/kg;d)一定时间后结束反应得浸出液,对所述浸出液进行过滤,固液分离得到滤渣和滤液。本发明采用上述结构的一种从硫化矿石中浸出铜、金和银的方法,整个工艺过程不需要高温高压的操作条件具有流程操作简单、设备投资低、运行成本低、环保无污染等优点。
本发明公开一种低品位多金属复杂黄铜矿中铜锌提取及铅铁分离方法,涉及冶金工程技术领域。本发明的低品位多金属复杂黄铜矿中铜锌提取及铅铁分离方法,通过在氧气气氛下水热体系中转化低品位多金属复杂黄铜矿中硫化物中硫为硫酸,低品位多金属复杂黄铜矿中硫化物中的铜、锌转变为硫酸锌、硫酸铜进入溶液,硫化物中的铅和铁转变为硫酸铅和赤铁矿进而入浸出渣,实现无酸条件下高效浸出铜和锌、分离铅和铁的目的。本发明的技术方案简单,试剂消耗少,能耗低,不产生温室气体,生产成本低,契合清洁高效、低碳环保的时代发展主题。
本发明涉及一种用于冶金行业的电能质量监控设备,包括服务器,还包括网关和多个DTU装置,各DTU装置的输入端分别连接至各用电设备的调试用串口,输出端通过网关连接至服务器,监控设备还包括无线接入点装置和手持终端,手持终端通过无线接入点装置连接至网关。与现有技术相比,本发明通过DTU装置可以实现一台服务器连接多个用电设备,从而可以使得对于用电设备的监控不局限于几个重要设备,在相同成本的情况下大大拓展了监控的范围,并且可以采用手持终端快速了解掌握运行情况。
本发明涉及一种回收存在于光伏电池(10)上的银的方法,该方法包括:‑步骤a),供应光伏电池(10),该光伏电池包括:‑支承基板(1),其由硅制成,‑掺杂硅的上层(2),其布置在支承基板(1)上,‑多个银线(3),其布置在上层(2)上,‑至少一个抗反射层(4),其布置在上层(2)上并与银线(3)相邻;‑步骤b),通过将光伏电池(10)浸入酸溶液中来刻蚀抗反射层(4);‑步骤c),通过将不具有抗反射层的光伏电池浸入碱性溶液中来刻蚀上层(2),从而导致银线(3)的分离;‑步骤d),使由支承基板(1)和所分离的银线(3)形成的组件变得干燥;‑步骤e),提取固态的银线(3)。
本发明公开了一种利用含铁酸处理红土镍矿的方法,包括以下步骤:(1)将含铁酸与红土镍矿混合配浆,含铁酸与红土镍矿配浆的液固比为1:1‑10:1;(2)将混合好的红土镍矿浆加入到高压设备中进行加压浸出反应,加压浸出反应的温度为150‑270℃,加压浸出反应过程中向高压设备中通入氧气,氧气分压为反应总压力的5%‑30%;(3)分离提纯,回收铁和镍。本发明利用钴镍冶金萃取废酸高酸高铁的特点以及铁离子高压水解沉淀释放酸的特性,用钴镍冶金萃取废酸对红土镍矿进行高压浸出,既充分利用了钴镍冶金萃取废酸的残酸和铁离子水解沉淀释放的酸,有效提取了红土镍矿中的镍,节约了红土镍矿提取镍的成本,又回收了废酸中的铁,避免了铁资源的浪费。
本发明公开了一种吡啶类醚类化合物及其制备方法和作为铜萃取剂的应用。吡啶类醚类化合物由2‑(氯甲基)吡啶盐酸盐与对烷基酚在碱和相转移催化剂催化作用下进行威廉逊醚类合成反应得到。该吡啶类醚类化合物作为铜萃取剂用于氨‑铵盐溶液中铜与镍、钴、锌等金属的萃取分离,对铜选择性萃取性好,且分相时间短,反萃能力优良。
本发明公开了一种稀土萃取分离过程实现自动化加料的方法,其具体操作步骤包括:(1)将稀土料液从物料储灌通过料液输送泵输送到萃取槽中;(2)通过流量计量控制装置控制稀土料液的流量;(3)将水输送到萃取槽中,通过流量计量控制装置控制水的流量;(4)将洗反酸溶液从物料储灌输送到萃取槽中,通过流量计量控制装置控制洗反酸溶液的流量;(5)稀土料液、水、洗反酸溶液在萃取槽内实现萃取过程;(6)通过车间控制室内的控制系统控制稀土料液、水、洗反酸溶液输送的开始与停止,以及实现实时监控流量。本发明测量结果准确度、精度明显提升,且较稳定;大大降低了测量校准的工作量,降低了生产成本,提高了生产效率。
本发明公开了一种自动清洗格栅式铜萃取槽,其结构包括混合槽、澄清槽、围栏、萃取槽、主体、排料口、楼梯、自动清洗控制箱、槽体,混合槽设于澄清槽左侧,澄清槽安装于主体上方,主体四周设有围栏,槽体由材料层、隔热层、合金层、空气层组成,本发明一种自动清洗格栅式铜萃取槽,在结构上独立设置了槽体,将铜与提取液一同放入混合槽中,并通过电机搅拌进行混合,混合后导入澄清槽中进行沉淀,随后导入萃取槽中进行萃取,废料通过排料口排出,当铜与提取液进入混合槽时,首先与材料层接触,隔热层将热量阻挡在隔热层外,合金层保证了整体槽体的硬度,由此保证了在使用一段时间后不会出现漏液的现象,提高了使用范围。
本发明公开了一种碱性浸出锌冶炼的硫酸铅渣回收铅锌银的方法,该方法包括:微波处理、浸出、电解金属铅、电解金属锌粉、回收金属银;本发明采用微波加热迅速,均匀,无冷中心及催化作用的原理,采用混合碳粉的硫酸铅渣更易吸收微波并在碳粉处产生瞬间高温的特点,配合碱性浸出液及电解处理,不仅能够有效从硫酸铅渣回收铅锌银,又能降低处理成本,提高效率。
本发明公开了一种分离废弃电极材料中钴酸锂和石墨的方法,将废弃锂离子电池放电、自然风干24小时,手工拆卸分离出正负极片、隔膜和外壳,将正负极片破碎筛分后得到筛下物料;按照一定比例将捕收剂正十二烷与乙醇提前混合均匀,取一定量混合药剂与筛下物料一同加入磨矿设备,得到磨矿产物;将磨矿产物进行浮选,浮物为石墨尾矿,沉物为钴酸锂精矿,浮选产品经过滤烘干焙烧后,计算钴酸锂品位;将部分磨矿物料直接磨矿(不加药)浮选计算钴酸锂品位进行对比。与直接磨矿浮选相比,磨矿加药浮选方式分离出的钴酸锂精矿品位要明显高于直接磨矿浮选分离出的钴酸锂精矿品位,强化了浮选分离回收钴酸锂的过程。
一种贵金属回收设备,属于贵金属处理设备技术领域。在溶解腔上设置进料口和进液口,电机通过转轴连接螺旋叶片,在溶解腔上端设置吸附层,在溶解腔内底部设置上推动器,上推动器连接上刮板,在溶解腔外设置液压泵,在溶解腔内设置推板,液压泵通过液压杆连接推板,在溶解腔下端设置过滤腔,溶解腔通过通道连接过滤腔,在过滤腔内设置一级过滤网和二级过滤网,一级过滤网位于二级过滤网上端,一级过滤网的孔径大于二级过滤网的孔径,在过滤腔一侧设置排渣口,在过滤腔下端设置出料口;所述的上刮板与推板相对设置。通过吸附层对有害气体进行吸附,通过螺旋叶片、上刮板和推板提高其溶解速度,并通过一级过滤网和二级过滤网进行过滤,提高其回收效果。
本发明公开的一种滩涂淤泥用环保型镍合金矿渣复合固化材料,其各组分的重量百分比为:镍合金矿渣45.0~65.0%;矿粉5~10%;粉煤灰10~18%;水泥5~15;石灰15~27%;盐类激发剂1~5%。本发明原料简单,来源广泛,科学合理,其原料组成大部分为目前工业难以消耗利用的镍合金矿渣以及工业固体废弃物矿渣、粉煤灰等,符合国家环保政策,不但节能降耗,而且固化土力学性能、水稳性优良。
本发明提供了一种含硫砷难处理金矿提金方法。该方法首先添加固体活性炭强化细菌氧化预处理,然后调整矿浆浓度以及pH后进行活性炭吸附浸出金。在生物氧化阶段固体活性炭的用量为6g/L~10g/L,粒度范围为1mm~5mm,在固体活性炭的作用下,细菌浸出含硫砷难处理金矿的氧化时间大幅缩短、浸出率大幅提高;预氧化完成后调整矿浆浓度及pH后直接用于浸金,浸金后解析回收金和砷。该方法为含硫砷难处理金矿细菌预氧化及浸金提供了重要的理论及技术指导。
本发明公开了一种金属钒或钒合金的制备方法,该方法包括:在金属盐的熔融状态下,将钒渣与所述金属盐接触反应,将接触反应后得到的混合物进行固液分离以去除固体杂质,并将固液分离后得到的熔融相进行电解,所述金属盐为在其熔融状态下能够与钒渣反应生成偏酸酸盐的物质。通过上述技术方案,实现了在金属钒或钒合金的制备过程中,钒合金收率高、金属钒纯度及收率高,且成本低、污染小的目的。
本发明公开了一种从废旧锂电池钴酸锂中分离钴锂制备磷酸钴的方法,该方法包括以下步骤:1)对废旧锂电池进行拆解、剥离,得到正负极活性物质;2)将所述正负极活性物质进行煅烧和研磨,得到含LiCoO2的粉末物料;3)所述含LiCoO2的粉末物料采用H3PO4和H2O2的混合浸取液进行浸出,所得浸出液通过中和,固液分离,得到磷酸钴沉淀和含锂溶液。该方法以典型废旧锂电池钴酸锂为原料,采用焙烧结合浸出方法有效分离Co和Li,并回收其高附加值钴制备磷酸钴(钴紫),实现废旧锂电池钴酸锂的资源化回收和利用。
本发明涉及化工冶金领域,具体涉及一种烟气余热再利用型红土镍矿直接还原生产粒铁系统及方法。该系统包括:所述原料处理装置,包括依次连接的破碎装置、筛分装置和混合装置,所述原料处理装置具有红土镍矿入口、还原煤入口、添加剂入口及含水混合物料出口;所述预热和还原装置包括:依次相邻的进料区、干燥管预热区、侧壁烧嘴还原区和出料区;所述进料区设有含水混合物料入口、兰炭入口;所述除尘装置包括:烟气入口、除尘烟气出口及粉尘出口;所述粗破重选装置包括:还原物料入口、镍铁粒铁出口和一次尾渣出口;所述磨矿磁选装置包括:一次尾渣入口、镍铁粉出口及二次尾渣出口。该系统具有处理流程短、成本低、作业率高、能耗低等优点。
通过堆浸从红土矿石中回收镍和/或钴的方法,该方法包括下述步骤:a)由红土矿体形成一个或多个堆,其中该红土矿体包含褐铁矿型矿石和腐泥土型矿石的共混物;b)用浸提溶液将所述一个或多个堆浸提;以及c)从该产物堆浸出液中回收镍和/或钴。
使不互溶的第一液体和第二液体不经混合而接触的方法以及实现该方法的装置,在所述方法中,进行了下列步骤:A)将第一液体置于具有壁的至少一个容器中,所述壁由不与第一液体和第二液体反应的固体材料制成且包含一个或多个通孔;第一液体对于组成所述壁的所述固体材料是非润湿性的;B)将所述第一容器浸入一定体积的第二液体中,以使第一液体与第二液体在所述通孔的水平处接触;C)使第一液体与第二液体继续接触足够长的时间以便在第一液体和第二液体之间发生物质交换或传递;和D)从所述一定体积的第二液体中取出所述第一容器。
一种轻稀土矿和低钇离子稀土矿用预分离萃取联合分离的方法,属于溶剂萃取分离稀土技术;利用轻稀土矿的中重稀土配分小于低钇离子稀土矿的中重稀土配分,以及轻稀土矿的La-Nd轻稀土中Ce含量高于低钇离子稀土矿的La-Nd轻稀土中Ce含量的特点,采用预分离萃取法,将轻稀土矿分离过程中的2个预分离萃取段及La/Ce分离的负载有机相分别作为低钇离子稀土矿萃取分离步骤中的萃取有机相,进入低钇离子稀土矿的萃取分离,本发明方法依次包括五个步骤,形成轻稀土矿和低钇离子稀土矿联合分离的工艺流程;这种方法使整体分离效果更好,萃取分离工艺处理能力提高,酸碱化工原料消耗降低,萃取剂和稀土金属的存槽量减少,生产成本降低,并减少生产废水的排放,有利于绿色环保。
本发明涉及锂离子电池正极边角料的回收方法,属于能源材料技术领域。本发明解决的技术问题是提供锂离子电池正极边角料的回收方法。该方法包括以下步骤:将锂离子电池正极边角料充分粉碎后,升温到450~650℃保持90~150min;冷却,筛分,得到收集于筛网之下的正极材料粉末与留在筛网之上的铝粒;将正极材料粉末用碱性溶液洗涤,静置分层,倾滗上层液体及漂浮物,将底部浆料过滤,洗涤,干燥,即得正极材料。本发明流程短,操作简单,可降低能耗;碱性溶液可反复使用,节约资源;不带入其它可能会影响电池性能的粒子,未破坏材料本身化学结构,避免了高成本的二次合成,回收过程安全无毒,对环境友好,环保压力小。
本发明公开了一种DSA蜂巢阳极。该DSA蜂巢阳极包括导电基架和多个DSA阳极片,导电基架包括导电横梁和蜂巢孔板,蜂巢孔板固定在导电横梁上,蜂巢孔板具有多个孔,多个阳极片分别与多个孔位置对应并安装在蜂巢孔板上,阳极片与蜂巢孔板电导通。多个DSA阳极片形成“蜂巢”结构单元,小的表面积降低DSA阳极片的涂层内应力,不易出现涂层裂缝、分层脱落现象,减少涂层失效概率;该结构将涂层恶化控制在蜂巢单元内,可避免大面积弥漫性扩散造成涂层整体恶化失效,提高阳极使用寿命;当某一DSA阳极片的涂层损坏时,方便更换;该结构还可降低加工难度;蜂巢孔板的多个孔形成的蜂巢结构提高了基础导电能力与电场分布的均匀性。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!