本发明公开MoS2纳米片镶嵌在碳基底复合材料的制备方法及应用,属于新材料技术领域。采用溶于二甲基甲酰胺的四硫代钼酸铵溶液为反应前驱体,加入到自制的反应装置中密封后放到可通保护气体的加热炉中加热到适当温度使前驱体分解成气体产生高压,在高压作用下制备MoS2/C纳米复合材料。此MoS2/C纳米复合材料是由MoS2纳米片均匀镶嵌在氮氧共掺杂碳基底上的微结构组成的,然后将MoS2/C纳米复合材料作为锂离子和钠离子电池负极材料。本方法工艺简单﹑原材料丰富﹑成本低廉,采用本方案制备的MoS2/C纳米复合材料作为锂离子和钠离子电池负极材料可以改善电池循环性能和倍率性能,宜于大规模推广,具有良好的应用前景。
本发明提供一种石墨烯/二氧化钛空心球/硫复合材料的制备方法,包括以下几个步骤:(1)将石墨烯加入到水溶液中超声分散,形成悬浮液;(2)将硫酸钛、氯化铵依次加入到上述悬浮液中搅拌均匀,然后加入水热釜中进行水热反应,反应完全后自然冷却、过滤、水洗、乙醇洗、干燥后得到空心二氧化钛石墨烯复合材料;(3)将得到的空心二氧化钛石墨烯复合材料和硫单质加入到二硫化碳中,超声分散,形成悬浮液,然后蒸干溶剂,得到石墨烯/二氧化钛空心球/硫复合材料。石墨烯/二氧化钛空心球/硫复合材料中二氧化钛空心球的包覆着硫基材料,能抑制放电产物多硫化物的溶解以及缓解体积膨胀,提高其电化学性能。
本发明公开了一种储能复合材料及其制造方法。本发明公开的储能复合材料主要包括外层封装材料和内层的复合相变材料,它是一种具有一定机械强度的储能材料。本材料与热源器件紧密接触,当热源器件材料的温度高于储能复合材料的温度时,储能材料会吸收热源器件的热量,特别是热源器件瞬间释放的高热量,反之,当热源器件材料的温度低于储能复合材料的温度时,储能复合材料会释放热量给热源器件,保证的热源器件合适的工作温度,减少低温对材料、器件、设备的损害。本发明同时还公开了一种简单高效的生产方法,可以有效提高产品生产效率,降低生产成本。本发明将材料的结构性和功能性优化组合,为热管理领域提出了一种新型高效的散热冷却方案。
本发明公开了一种碳纤维改性PBT复合材料及其制备方法,该碳纤维改性PBT复合材料是将PBT塑胶、抗氧化剂、润滑剂按质量百分比99%:0.1%-0.6%:0.2—0.5%混合均匀得到的PBT塑胶混合物与碳纤维丝束按质量百分比15%—25%:75%—85%共混并挤出造粒形成的碳纤维改性PBT复合材料。还公开了一种使用该碳纤维改性PBT复合材料在铝合金注塑上的用途。本发明能显著增强PBT塑胶的刚性和强度,经碳纤维改性的PBT复合材料在铝合金注塑应用中表现出优良的综合性能。
本发明公开了一种高强度PE木塑复合材料,其是由以下质量份的原料组成:20-50份的废旧PE塑料、40-70份的植物纤维粉、0-15份的热塑性弹性体、2-6份的界面相容剂、0-20份的增强填料、1-6份的润滑剂、0.4-0.6份的抗老化助剂、0.1-0.5份的引发剂。本发明也公开了高强度PE木塑复合材料的制备方法,包括步骤:1)将各原料混合均匀,置于挤出机中挤出造粒;2)将造粒后的粒子挤出成型为板材。本发明制备的木塑复合材料具有优异的性能,例如具有较好的拉伸强度、弯曲强度、弯曲模量等,本发明所使用的界面相容剂,能有效促进基体与其他成份之间的界面性能,从而提升复合材料的相关性能,本发明制备的复合材料具有优良的可加工性能,可锯、可钉、可刨。
本发明属于复合材料领域,其公开了一种石墨烯/碳纳米管复合材料的制备方法,包括如下步骤:将石墨烯加入到溶剂中,超声处理后配置成浓度为0.5-2mg/ml的石墨烯悬浮液;将经酸处理过的碳纳米管加入到所述石墨烯悬浮液中,再次超声处理,得到前驱体溶液;将前驱体溶液置于反应器中密封后,进行热压处理,随后去除压力,得到石墨烯/碳纳米管复合材料。本发明提供的石墨烯/碳纳米管复合材料的制备方法的优点在于:通过临界流体的作用,使得石墨烯与碳纳米管混合的更为均匀,通过瞬间释放的压力,破坏石墨烯层与层之间的范德华力,使得石墨烯不容易团聚,从而得到碳纳米管和石墨烯均匀分散混合的复合材料。
本发明属于抗紫外线抗菌树脂材料领域,具体涉及一种石墨烯改性水性聚氨酯复合材料及其制备方法。针对石墨烯改性水性聚氨酯时易出现吸附团聚,改性得到的复合材料性能不好的问题,本发明提供了一种石墨烯改性水性聚氨酯复合材料的制备方法,利用三氨乙基胺或赖氨酸对氧化石墨烯进行改性,使氧化石墨烯枝接上氨基,再还原得到改性石墨烯,提高了其在水溶液、有机溶液中的分散性,同时以通过氨基以共价键结合水性聚氨酯,提高了其在复合材料中的分散性、相容性、稳定性,使水性聚氨酯具有抗菌性、耐紫外光性,同时改善其力学性能、导热性能、抗水性能和耐腐蚀性能,拓宽了石墨烯改性水性聚氨酯复合材料的应用领域。
本实用新型属于热塑性复合材料领域,具体涉及一种抗菌防霉热塑性复合材料板。所述复合材料板由隔离层、抗菌防霉功能层、缓冲层、增强层和介质层组成,各层经过热压复合后制成的复合材料板,其中缓冲层分别嵌入至抗菌防霉功能层和增强层内部,介质层部分嵌入到增强层内部;隔离层的下表面与抗菌防霉功能层的上表面贴合,具有可剥离的界面;抗菌防霉功能层的下表面与增强层的上表面无明显界面,不可剥离。所述抗菌防霉热塑性复合材料板,具有多重抗菌体系协同作用,表面层采用无机抗菌剂和有机抗菌剂,相结合的抗菌防霉体系,产品加工时抗菌活性保留率高,经检测,对大肠杆菌抗菌率≥99.9%,对经黄色葡萄球菌抗菌率≥99.9%,防霉等级0级。
本发明公开了一种生物基复合材料及其制备方法,该生物基复合材料主要以锯木屑、淀粉和/或含淀粉材料、硬脂酸和植物纤维作为结构料,淀粉和硬脂酸与热水混合后在高温下发生物理糊化和聚合反应,制成可自然降解的生物基复合材料,产品环保、低成本、结构力好。锯木屑虽然结合力低于废纸,但是有利于控制成本。本发明的复合材料用料天然,无需加入有毒有害难以降解的塑料成分,无需另外添加化学胶黏成分,可回收降解,无毒无害,成分价廉易得。该生物基复合材料的原料易得且环保,步骤简单。
本发明公开了一种纳米复合材料及其制备方法与应用,该纳米复合材料包括金纳米颗粒、石墨烯‑花状的二硫化钼纳米片复合材料;金纳米颗粒负载在石墨烯‑花状的二硫化钼纳米片复合材料表面。本申请公开的纳米复合材料纯度高、形貌均一、粒径可控,比表面积大,导电性好,物理化学稳定性好,本发明公开的一步水热法和金原位生长法具有绿色安全、步骤简单、高效快速、可大批量生产的优势。本发明公开的电化学阻抗传感器具有灵敏度高特异性强的优点,可广泛应用于细胞生物学、癌症检测产品、药物筛选和环境监测中。
本发明涉及聚碳酸酯技术领域,具体涉及一种氮化硅增强的绝缘导热PC复合材料及其应用,PC复合材料包括PC、复合增强体、无卤阻燃剂、光稳定剂、抗氧化剂和润滑剂,所述复合增强体由10‑20份氮化硅纤维、10‑20份碳纤维和20份PC组成。本发明以氮化硅纤维和碳纤维相互缠绕作为骨架,形成具有大量空隙的三维空间结构,该三维骨架可以有效传递冲击载荷,从而提高PC复合材料的抗冲击强度,并且该骨架可以在PC基体中形成稳定的导热通路,从而显著地提升复合材料的导热性能;此后通过溶剂再生的方式,使PC填充于氮化硅纤维和碳纤维的骨架内,避免骨架空隙过多从而达不到增强的作用,利于形成性能稳定的PC复合材料。
本发明提出一种水泥基复合材料的制备方法,包括如下步骤:将水泥基复合材料的组分进行混合,所述水泥基复合材料的组分包括胶凝材料、骨料、水、钢纤维、减水剂及消泡剂,其中,所述胶凝材料包括水泥及硅微粉,所述硅微粉与所述水泥的质量比在7%~15%,所述水与所述胶凝材料的质量比在0.12~0.3;将搅拌好的浆体倒入模具中;对所述模具中浆体的表面进行震平;静置密封养护预定时间;及拆除所述模具并在室温条件下,喷水或在湿度>95%的条件下进行保养。上述水泥基复合材料的制备方法制造的水泥基复合材料构件的立方体抗压强度高,大于大理石的抗压强度,养护条件温和,对环境污染小,不需进行额外加工,方便安装使用且成本低。
本申请公开了一种用于形成保温层的复合材料、涂覆浆料及制备方法。本申请的复合材料,由具有层链状结构的凹凸棒石、层状结构的蒙脱石、层状结构的高岭石和纤维状的硅灰石,四种天然矿物材料的纳米级微细颗粒复合而成,凹凸棒石的软质纤维与硅灰石的硬质纤维构成毛线团状的具有纳米微孔结构的纳米级纤维球;蒙脱石和高岭石的纳米片包裹于纤维的外部,并填充到纳米微孔中,形成复合材料。本申请的复合材料,采用四种不同结构类型天然矿物材料复合而成,阻燃性高,耐高温,保温效果好,安全无毒,适用于高温保温领域。本申请的复合材料中,其纳米级纤维球结构强度高、结合牢固,适合在液态中搅拌,因此,适用于制备用于形成保温层的涂覆浆料。
本发明属于新材料中高分子材料的新型功能高分子材料的制备及应用技术,涉及改性塑料技术领域,具体来说是一种高韧性的PLA/PPC生物降解复合材料的制备方法。本发明首先从三七、连翘、丁香中提取出活性成分作为天然抗菌剂;然后将聚碳酸亚丙酯、淀粉微粉、聚乳酸干燥后与天然抗氧化剂、天然抗菌剂、助剂混合均匀后造粒,制备得到PLA/PPC生物降解复合材料;最后将PLA/PPC生物降解复合材料利用碱处理后用硅烷化试剂修饰提高韧性制得高韧性的PLA/PPC生物降解复合材料。经本发明制备得到的PLA/PPC复合材料不仅易生物降解而且抗菌性能良好,力学性能优异且安全无毒。
本发明属于纳米复合材料领域,公开了一种N掺杂CNT原位包覆Co纳米颗粒复合材料及制备与应用。将尿素、硼酸、聚乙二醇及硝酸钴溶于水中,搅拌混合均匀后,加热使溶剂挥发完全,干燥,得到前驱体粉末,然后进行热处理,得到N掺杂CNT原位包覆Co纳米颗粒复合材料。本发明通过原位热聚合得到N掺杂的CNT,并通过原位还原作用在碳纳米管中负载Co纳米颗粒,制备出形貌可控、大小均一且结构稳定性好的N掺杂CNT原位包覆Co纳米颗粒复合材料,所得复合材料在进行S负载后,优异的导电性及电化学催化作用使其作为锂‑硫电池正极材料表现出优异的电化学性能,包括良好的循环稳定性和较高的可逆比容量。
本发明公开了一种二氧化钛大孔微球/金属钛复合材料及其制备方法和应用,所述制备方法包括如下步骤:S1.将钛基底进行抛光处理,将抛光后的钛基底与强碱溶液进行水热反应,得到水热处理的钛基底;S2.将步骤S1.中水热处理的钛基底洗涤后置于酸溶液中进行离子交换,得到复合材料前驱体;S3.将步骤S2.中复合材料前驱体洗涤、干燥、煅烧,得到所述二氧化钛大孔微球/金属钛复合材料。本发明将钛基底和强碱溶液通过水热反应在金属钛基底上原位生长锐钛矿型二氧化钛大孔微球,制得的复合材料具有结构稳定、比表面积大、结晶度高、粒径分布窄等优点,具有优异的光电化学性能和出色的稳定性。而且,该方法成本低、易操作,效率提升效果好,具有较大的应用前景。
本发明提供一种基于细菌纤维素改性的PHBV复合材料,该复合材料包括改性的微米级竹笋细菌纤维素和聚羟基丁酸无酸酯PHBV,具体制备方法为:将竹笋细菌纤维素,真空冷冻干燥,经超微粉碎机粉碎,过筛,得到微米级竹笋细菌纤维素;将微米级竹笋细菌纤维素加入到蒸馏水中,高速搅拌,滴加硅烷偶联剂和偶氮二异丁腈,加热反应,得到改性的竹笋细菌纤维素溶液;将聚羟基丁酸无酸酯PHBV加入到二氯甲烷中搅拌均匀,与改性的竹笋细菌纤维素溶液混合,滴加N‑羟基琥珀酰亚胺,搅拌,挥发溶剂,固化得到基于细菌纤维素改性的PHBV复合材料。本发明制备的PHBV复合材料利用细菌纤维素改性PHBV,提高PHBV复合材料的韧性和亲水性。
本发明公开了一种光致变色树脂复合材料及其制备方法,该方法包括以下步骤:将聚丙烯腈大孔吸附树脂进行胺化预处理和碳改性;再加入抗菌复合材料和光致变色复合物分散混合溶液反应,超声搅拌,静置60min,在60~80℃下干燥,即可得到光致变色树脂复合材料;所述抗菌复合材料占聚丙烯腈大孔吸附树脂总重量的0.5~1%,所述光致变色复合物占聚丙烯腈大孔吸附树脂总重量的1~2%。本发明经过合理的搭配光致变色复合物和抗菌复合材料,两者协同作用,使得树脂材料具有优异抗菌和光致变色性能,满足多功能树脂材料的需求,进一步拓宽树脂材料的应用。
本发明公开了一种纤维复合材料多功能免拆模板及其制备方法,所述纤维复合材料多功能免拆模板由多层间隔设置的纤维材料层和具有导电功能的胶凝材料层构成;其中,至少一层所述纤维材料层由碳纤维增强复合材料构成;所述纤维复合材料多功能免拆模板的上下两端为所述胶凝材料层,每层所述纤维材料层均包裹在相邻的两层所述胶凝材料层之间。本发明所述纤维复合材料多功能免拆模板用在建筑工程施工中时,既能解决钢筋锈蚀的问题,保护钢筋混凝土结构,又可以代替木制临时模板使用,且免于拆卸,从而能够使钢筋混凝土主体结构从开始建造就得到较好的保护,节约了社会资源,保护了环境,减少了模板成本,大大加快了施工速度。
本发明涉及一种划槽线性处理设备,尤其涉及一种高分子及复合材料板弯折前划槽线性处理设备。技术问题为:提供一种能够对复合材料板进行夹紧固定且均匀间隔划槽的高分子及复合材料板弯折前划槽线性处理设备。本发明提供了这样一种高分子及复合材料板弯折前划槽线性处理设备,包括有刨槽机构和连接板,刨槽机构上设有连接板;刨槽刀,连接板下部滑动式设有刨槽刀;第一弹簧,刨槽刀顶部与连接板之间设有第一弹簧;夹紧机构,刨槽机构上设有夹紧机构。本发明通过刨槽刀、刨槽机构和夹紧机构的配合,能够自动对复合材料板进行夹紧,然后划槽,操作简单,效率较高。
一种耐低温树脂复合材料的制备方法,本发明涉及一种耐低温树脂复合材料的制备方法。本发明是为了解决现有树脂复合材料冷热交变性能较差的问题。一、称料;二、将环氧树脂加热至100~110℃,然后在室温下将石墨烯和耐寒助剂加入到环氧树脂中,置于行星搅拌器中,转速设置为1800r/min,旋转搅拌30s,得到混合液;然后将混合液加热至130~140℃后加入改性聚醚酮树脂,搅拌50~80min后加入纳米固化剂,混合均匀后加热固化,得到耐低温树脂复合材料。本发明用于制备耐低温树脂复合材料。
本发明公开了一种基于Ti3C2(MXene)‑Pd纳米复合材料的水杨酸电化学传感器及其应用;所述水杨酸电化学传感器包括参比电极,对电极和修饰后的工作电极;所述修饰后的工作电极包括玻碳电极和修饰在玻碳电极表面的纳米复合材料,所述纳米复合材料为Ti3C2(MXene)‑Pd纳米复合材料。所述Ti3C2(MXene)‑Pd纳米复合材料通过Ti3C2(MXene)在H2PdCl4中自还原出钯纳米粒子制备得到。本发明制备的传感器具备优异的性能,拥有较宽的线性范围与较低的检测限,较高的灵敏度,良好的稳定性与抗干扰能力。
一种耐高温有机无机杂化复合材料电池隔膜的制备方法,本发明涉及一种耐高温有机无机杂化复合材料电池隔膜的制备方法。本发明是为了解决现有复合材料电池适用温度低、产业化存在局限的问题。将二价金属盐水溶液滴加到除氧的2,5‑二氨基‑1,4‑苯二噻吩二盐酸盐有机溶液中,然后调节pH值;在室温条件下搅拌;溶于有机溶剂;通过涂膜装置将有机无机杂化聚合物饱和溶液涂覆于玻璃平板上,形成薄膜,并将其匀速浸入至非溶剂相液体中,静置3~24h;取出并从玻璃平板上剥离,置于容器内并保持平整,然后于0℃至‑90℃保持0.2h~24h,最终得到耐高温有机无机杂化复合材料电池隔膜。本发明用于制备复合材料电池隔膜。
本发明涉及一种生物陶瓷钛基复合材料的粉末冶金制备方法,其特征在于包括:(1)将粒度为5ΜM~100ΜM的金属钛粉与粒度小于100NM的纳米羟基磷灰石粉混合均匀,其中纳米羟基磷灰石体积分数为1%~10%;(2)混合粉末采用等静压成形,在1050℃~1200℃真空烧结,制备得到生物陶瓷钛基复合材料。所制得的复合材料的生物活性高于粉末冶金方法制备的纯钛材料,复合材料抗弯强度大于140MPA,高于或相当于人体骨;复合材料压缩弹性模量7.9GPA~18.5GPA,与人体骨接近。本发明可用于制备人体骨骼和牙齿等硬组织用生物置换(修复)体。
本发明公开了一种改性硅藻土负载硫化亚铁复合材料及其制备方法和应用,涉及工业废水处理技术领域。本发明的改性硅藻土负载硫化亚铁复合材料的制备方法是通过草酸酸洗改性后的硅藻土负载硫化亚铁,从而得到具有良好分散性的改性硅藻土负载硫化亚铁复合材料,能够有效地对工业废水中的六价铬进行吸附还原,且吸附还原速率高、吸附容量大、化学稳定性高。本发明的改性硅藻土负载硫化亚铁复合材料尤其适用于吸附还原水体中的高毒性六价铬,在pH为3.0~9.0范围内均能有效吸附还原六价铬,将其加入含有50mg/L六价铬的水体中反应90min后,六价铬的浓度可以降低到0.047mg/L,去除率达到99.91%。
本发明公开了一种无卤阻燃PPO/PBT复合材料及其制备方法。这种无卤阻燃PPO/PBT复合材料包括以下的原料:PBT、PPO、TPEE、聚苯醚‑聚二甲基硅氧烷共聚物、多环氧‑线性酚醛树脂、端羟基聚苯醚、反应增容剂、填料、抗氧剂、着色剂、抗UV助剂。同时也公开了这种无卤阻燃PPO/PBT复合材料的制备方法。本发明制备的无卤阻燃PPO/PBT复合材料,加工工艺简便、注塑成型尺寸稳定、抗冲性能强、吸水率低,可广泛用于家庭加热设备、齿轮、风扇轮、叶轮、电源插座等领域。
本发明公开了一种高效屏蔽电磁干扰MXene/金属离子复合材料的制备方法,属于二维材料领域,本发明所要解决的问题是进一步提高MXene的屏蔽电磁干扰性能,提供一种体积小,密度低,强度高,厚度薄,柔韧性好而且对电磁干扰屏蔽能力强的MXene:Ti3C2/金属离子复合材料的制备方法。本发明首先采用氢氟酸对MAX相的Ti3AlC2粉进行刻蚀,得到手风琴状MXene:Ti3C2片;然后利用吸附法在MXene:Ti3C2表面修饰均匀的Fe3+/Co2+/Ni2+离子;随后,采用压片法,制作得到Ti3C2:Fe3+/Co2+/Ni2+复合材料薄膜。所述Ti3C2:Fe3+/Co2+/Ni2+复合材料薄膜可以用于EMI屏蔽,在15GHz频率下,三种材料最高可以达到53.44%的屏蔽效率。
本发明提供了一种棒状Co2C‑MoN复合材料及其制备方法和应用。本发明的棒状复合材料的制备方法,是通过将泡沫镍置于混合溶液中进行水热反应,制备得到钼酸钴前体材料;然后利用高温煅烧法,进行高温煅烧即得复合材料。本申请制备得到的复合材料,在含有尿素的碱性溶液中,对阳极的尿素氧化反应以及阴极的析氢反应均有优异的催化性能;在此基础上,构建了双电极电解槽系统。在电流密度为50mA·cm‑2时,整体尿素水分解所需电压为1.507V,比整体水分解所需的电压低171mV。此外,所制备的催化剂不仅可以高效催化制氢,而且还能够有效处理废水中的尿素。因此,它将是一种很有前途的绿色电催化剂。
本发明涉及一种介孔无机纤维复合材料及其制备方法和应用,属于无机复合材料技术领域。该方法采用高温处理的技术在埃洛石纤维表面构造出纳米结构,并采用水热处理的方法丰富其表面羟基,再以此纤维膜为基材,将其与二氧化硅气凝胶母液复合,使硅气凝胶母液填充至纤维膜空隙中;通过常压干燥方法,制备出致密的气凝胶复合材料。该制备方法使用常压干燥法即可获得介孔无机纤维复合材料,无体积收缩、致密无裂纹的介孔气凝胶/纤维膜复合膜,且可简化常压干燥法的制备工序,大幅提升了制备效率,节约了成本,有望在高效吸附、纳米催化剂负载及高温气体催化等领域的广泛应用。
本发明涉及抗菌薄膜材料制备技术领域,具体公开了一种可缓释抗菌成分的复合材料及其制备方法与抗菌缓释袋。所述的可缓释抗菌成分的复合材料的制备方法,其通过包含如下步骤的方法制备得到:S11.取多孔吸附材料与抗菌精油混合,得吸附有精油的多孔吸附材料;S12.将吸附有精油的多孔吸附材料与糊化后的淀粉混合,得抗菌缓释材料。由该方法制备得到的可缓释抗菌成分的复合材料可以持续4个月以上释放精油抗菌成分,最好的实施例中,精油抗菌成分的持续释放时间达9个月。进一步地,将本发明所述的可缓释抗菌成分的复合材料包裹在由PET、PE、PA或PP制成的透气薄膜袋中制成抗菌缓释袋,所述的抗菌缓释袋可以被广泛地应用于各种需要抗菌的环境中。
中冶有色为您提供最新的广东有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!