本实用新型提出一种轻量化方舱预埋暗线管路结构,包括穿线管、PVC泡沫层以及FRP复合材料层,所述FRP复合材料层为两道平行的外部结构板,所述PVC泡沫层填充于两道FRP复合材料层间,所述穿线管穿设于PVC泡沫层内,穿线管为圆管且穿线管相对于PVC泡沫层保持固定。所述穿线管转弯处设置有连接装置,所述连接装置包括连接头和用于固定穿线管端部与连接头的旋盖,所述连接头为90度弯管且弯折处为圆角,连接头的两个接口处的内部设置有嵌合段,所述嵌合段与穿线管端部接触固定,两嵌合段间的连接头内部为转接段。本实用新型解决了轻量化方舱内部为电力通讯需求需要预埋和固定暗线管路以及暗线管路转弯处易出现穿线不顺畅的问题。
本实用新型提供了一种组合式建筑模板,板芯上下表面连接脱模层,所述板芯为玻璃纤维复合材料,脱模层是聚四氟乙烯复合材料,其中聚四氟乙烯纤维浸渍包裹由与板芯材质相容的热塑性材料,加热后的熔融状态的脱模层与同是熔融状态的板芯材料的模压而交联一体,板芯内部设有L型销孔,所述相邻的模板之间通过销轴连接,本实用新型在模板外层布置一侧脱模层,脱模层为聚四氟乙烯复合材料,使模板不沾水泥,防止模板起毛边,易清洗水泥,耐磨,延长使用寿命,在板芯上设置L型销孔,多个小模板通过销轴可以相互拼接成大模板,可根据施工情况来应用,同时也方便制造和运输,本实用新型结构简单,操作方便,用途广泛,极易推广。
本实用新型公开了一种新型的复合建筑材料板,包括防水层、复合材料层、分离网格、填料中间层、钢筋加强层、温度隔离层和边界粘贴层,所述防水层设置在板材的最外层,所述防水层内壁紧贴着复合材料层并通过粘合剂固话粘接,所述复合材料层内侧设置有钢筋加强层且中间放置着填料中间层,所述填料中间层外端面通过分离网格包裹着,所述钢筋加强层内侧设置有钢筋加强层并且中间隔着填料中间层,所述边界粘贴层包裹着材料板两端并粘接固定,本实用新型具有良好的防水、保温的功能,而且采用两层钢筋加强层来提高材料板的强度,本材料板具有防潮湿、重量轻、保温性能好、强度高等特点并且安全环保、使用寿命长。
本发明属于氨硼烷水解制氢技术领域,公开一种氨硼烷制氢用催化剂Ni2‑xFex@CN‑G及其制备方法。所述催化剂的结构为氮掺杂碳包覆的NiFe纳米颗粒生长在石墨烯纳米片上。制备方法:(1)、制备前驱体Ni2‑xFex‑LDH@PDA‑GO复合材料:(1a)、将GO分散于水中,获得GO分散液;(1b)、将镍盐、铁盐、尿素溶液和聚乙烯吡咯烷酮溶液加入到GO分散液中,搅拌均匀,加入碱性溶液,再搅拌均匀,加入多巴胺溶液,搅拌24‑72 h后,控温在120‑140℃水热反应24‑48 h;冷却至室温,然后抽滤、干燥,制得前驱体Ni2‑xFex‑LDH@PDA‑GO复合材料;(2)、将前驱体Ni2‑xFex‑LDH@PDA‑GO复合材料在惰性气氛保护下煅烧,降至室温,加入乙醇钝化,烘干、研磨,制得催化剂Ni2‑xFex@CN‑G。本发明所制备的催化剂用于氨硼烷制氢具有很高的活性。
一种Au/Ag共修饰Sn3O4纳米复合光催化材料的制备方法,该纳米复合材料是将氯金酸、硝酸银和锡源材料在溶剂、表面活性剂及还原剂中,通过冰浴结合溶剂热的湿化学原位合成法使其复合成分之间形成化学键络合而得到的Au/Ag共修饰Sn3O4纳米复合材料。本发明制得的复合材料利用Au/Ag二元金属纳米颗粒的等离子共振效应、Sn3O4材料的氧空位缺陷效应,以及Au/Ag金属纳米颗粒的优异电子传导,实现在光催化氧化还原降解污染物协同光催化分解水产氢过程中的快速电子‑空穴分离,从而提高其光催化分解水和光催化降解罗丹明B的效率。
一种有天然抑菌功能的环保型暖通风管,所述暖通空调风管是以铜铝冶金复合单面或双面复铜为材料,铜铝冶金复合板带是以铝为基材,单面或双面冶金复合铜带的金属铝基复合材料,其要求是在铜和铝之间达到冶金复合,所用铜带的铜含量必须达到60%以上的纯铜或铜合金。暖通空调风管是将铜铝冶金复合材料的铜层面作为风管的内表面。本发明所述的铜铝冶金复合的暖通空调风管是代替镀锌板,不锈钢和其他材质风管的新一代天然抑(杀)菌的环保型风管。采用铜铝冶金结合的复合材料制作,其结合强度≥100Mpa。所制成的铜铝复合板表面光洁,平整。生产过程中折弯、钻孔、冲孔、攻丝、做旧、上漆等加工时不易出现开裂脱离等现象,保证了暖通空调风管道的成品率和产品的质量。
本发明属于锂离子电池技术领域,具体公开了一种用于包覆硅的多孔块状石墨材料及其制备方法,本发明中制备方法以块状石墨为原料,经转动包覆、炭化、活化扩孔制备获得一种用于包覆硅的多孔块状石墨材料,该方法流程简单、处理工艺成熟;本发明中用于包覆硅的多孔块状石墨材料,打破石墨理论克容量372mAh/g的限制,可以很好地搭配硅材料使用,缓解硅在嵌脱锂过程中的体积膨胀,改善硅碳复合材料的循环稳定性等,在保证硅碳复合材料高容量优势的同时可降低硅的添加量,从而降低硅碳复合材料的成本,本发明扩宽了块状石墨的用途,扩大了锂离子电池负极材料来源空间,为市场提供了适合与硅材料复合的石墨材料,对环境友好、成本低,适合工业化生产。
本发明涉及一种超声波强化铝塑分离的方法,属于再生资源循环技术领域。首先,将铝塑复合材料剪切到一定大小;将剪切后的铝塑复合材料放入超声分离系统中,加入甲酸和草酸混合溶液,启动超声波装置及搅拌开关;反应结束结束后,关闭超声波装置及搅拌装置,将底部铝与塑料分捡出。本发明针对铝塑复合材料粘结方式引入超声波高频振动的方式强化铝塑分离,极大的减少药剂使用量,分离效果好,引入外场强化手段,为铝塑分离提供了一种新方向,经过本方法处理后,铝塑实现彻底分离,缩短分离时间的同时药剂消耗少,且铝的损失率小,经济高效。该方法做到了变害为宝,实现了自然资源的综合利用,有利于缓解资源与环境的压力,具有优越的经济和生态效益。
本发明公开了一种Ag/Cu共修饰Sn3O4纳米复合光催化材料的制备方法,该纳米复合材料是将银盐、铜盐和锡盐材料在溶剂、表面活性剂及还原剂中,通过冰盐浴结合溶剂热的湿化学原位合成法使其复合成分之间形成化学键络合而得到的Ag/Cu共修饰Sn3O4纳米复合材料。本发明制得的复合材料利用Ag/Cu二元金属纳米颗粒的等离子共振效应、Sn3O4材料的氧空位缺陷效应,以及Ag/Cu金属纳米颗粒的优异电子传导,实现在光催化氧化还原降解污染物协同光催化分解水产氢过程中的快速电子‑空穴分离,从而提高其光催化分解水和光催化降解落单B的效率。
一种有天然抑菌功能的环保型饮用水管,所述饮用水管是以铜铝冶金复合单面铜为材料,铜铝冶金复合板带是以铝为基材,单面冶金复合铜带的金属铝基复合材料,其要求是在铜和铝之间达到冶金复合,所用铜带的铜含量必须达到60%以上的纯铜或铜合金。是将铜铝冶金复合材料的铜层面作为风管的内表面。本发明所述的铜铝冶金复合的饮用水管是代替纯铜,不锈钢或其他材质饮用水管的新一代天然抑(杀)菌的环保型饮用水管。采用铜铝冶金结合的复合材料制作,其结合强度≥100Mpa。所制成的铜铝复合板表面光洁,平整。生产过程中折弯、钻孔、冲孔、攻丝、做旧、上漆等加工时不易出现开裂脱离等现象,保证了饮用水管道的成品率和产品的质量。
本发明公开了肿瘤治疗药物技术领域的一种治疗胆系肿瘤的药物纳米复合温敏凝胶剂,包括下述三种物质:胆系肿瘤药物;温敏凝胶剂;复合材料:该复合材料用料组成为:凝胶骨架:17~30%,该种治疗胆系肿瘤的药物纳米复合温敏凝胶剂,降低凝胶表面的疏水性,配合抗炎性多肽,可在避免造成大量蛋白质黏附和变性的同时,减轻炎性反应,避免炎性反应使凝胶周围形成纤维包裹,稳定渗透压,保证凝胶的水分和网络结构的稳定,并融合复合材料达到骨料支撑效果,提高了凝胶骨架与水分的相互作用,提高结合水比例,提高凝胶的机械强度,减少和控制水分流失,延长凝胶在体内的降解速度,可长期稳定释药,避免出现药物突释的风险。
本发明公开了预应力碳板‑ECC组合加固钢筋混凝土结构及施工方法,在混凝土梁底部叠合了水泥基复合材料ECC层、预应力材板以及水泥基复合材料ECC层外护层;利用水泥基复合材料ECC抗裂及抗渗性等良好的耐久性能在预应力板材加固的板材外侧保护板材,隔离外部恶劣环境对板材的侵蚀作用,同时也能提高混凝土梁的整体承载力以及梁底的抗裂缝能力;通过预应力板材和混凝土之间设置的ECC层,细密裂缝的特性则可以延缓板材的剥离,有效地传递界面剪应力,从而更好地发挥板材高抗拉强度的优点。
一种用于制作微型轴承保持架用棒料的成型方法,根据所需的保持架直径大小,利用程控压力机,制作出特定高度的板状聚四氟乙烯复合材料,板料受压均匀,再将板状复合材料切割成多根条状聚四氟乙烯复合材料,最后车削加工成一定直径的棒状聚四氟乙烯复合保持架材料,制得的棒状聚四氟乙烯复合保持架材料的拉伸强度得以提高,尤其是性能指标一致性好;本发明的生产效率高,较传统模具的生产效率提升十倍以上,大幅度降低了微型轴承保持架的制作成本,十分有利于拓展其在微型轴承领域的应用。
一种在基因修饰的烟草花叶病毒壳蛋白模板上进行纳米金生长的方法,也即基于基因修饰的TMVCP模板的一维金纳米复合材料的制备方法,其特征在于:是以基因修饰的TMVCP为模板,通过其与含金元素基团的静电作用,在其表面吸附含金元素基团,最后加入还原剂,从而实现了纳米金在基因修饰的TMVCP模板表面的生长,得到了新型的TMVCP-纳米金一维复合材料。结果表明,与在未经基因修饰的TMVCP模板上进行纳米金的生长相比,在基因修饰的TMVCP模板上进行纳米金的生长,纳米金在模板表面的生长密度得到较大提升,可望对TMVCP-纳米金一维复合材料的应用产生积极影响。
本发明提供了一种硫碳纳米复合材料吸附剂的制备方法,和这种吸附剂从液相中或者气相中回收重金属的应用。这种吸附剂的制备步骤包括:首先是利用漩涡摩擦混合法将活性炭和硫单质在水中进行充分地搅拌混合;然后以融化渗透的方法,将熔融态单质硫引入活性炭颗粒的表面上和孔道中。硫碳纳米复合材料中,单质硫以无定形薄涂层形式均匀地附着在活性炭材料颗粒的表面上和孔道中。硫碳纳米复合材料具备活性比表面积非常大的显著特点。吸附原理是利用单质硫纳米薄层作为金属捕获剂和含有重金属的颗粒,或者重金属的蒸气,液滴,离子形成一定的化学作用,从而实现其从液相中或者气相中吸附重金属的应用。
本发明属于电解水制氢技术领域,公开一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法。所述催化剂CoPxSy/MWCNTs为磷掺杂CoS2纳米片与多壁碳纳米管的复合材料,其中,0<y<2,x=2‑y。制备方法:将MWCNTs超声分散在1#水中,制得悬浮液;将Co(NO3)2·6 H2O、Al(NO3)3·6 H2O和CO(NH2)2溶于2#水中,搅拌溶解至澄清,搅拌下加入到所得悬浮液中,然后搅拌均匀,移入反应釜中,120‑150℃水热反应6‑9 h,冷却后离心、洗涤、干燥,制得CoAl‑LDH/MWCNTs复合材料;将CoAl‑LDH/MWCNTs复合材料在NaOH溶液中室温浸泡,过滤,洗涤、干燥,获得α‑Co(OH)/MWCNTs样品;将α‑Co(OH)/MWCNTs置于管式炉下游、P2S5置于管式炉上游,在惰性气氛下,升温至450‑550℃保持1‑2 h,冷却后获得催化剂CoPxSy/MWCNTs。本发明所制备的CoPxSy/MWCNTs催化剂用于电解水制氢具有超高的活性。
本发明公开了一种可降解的绝缘材料,包括壳体绝缘材料主体,所述绝缘材料主体由第一可降解涂层、第一粘合树脂、第一阻燃层、第一纳米复合材料层、第一增强层和绝缘材料基层组成,所述绝缘材料基层的上表面设置有第一增强层,所述第一增强层的上表面设置有第一纳米复合材料层,所述第一纳米复合材料层的上表面设置有第一阻燃层,所述第一阻燃层的上表面设置有第一粘合树脂,所述第一粘合树脂的上表面设置有第一可降解涂层,本发明,通过设置第一可降解涂层和第二可降解涂层,使其具可降解,通过设置阻燃层,使其具有阻燃的功能,且增强层的设置,使其强度得到增强,使用寿命更长。
本发明涉及一种3D打印用聚乳酸基复合线材的制备方法,属于3D打印材料技术领域。本发明通过添加玉米直链淀粉,制备一种3D打印用聚乳酸基复合线材,直链淀粉是D‑葡萄糖基通过a‑1,4糖苷键连接而成的呈右手螺旋状的链状分子的线性结构,具有大量的羟基官能团,能与聚乳酸上的官能团形成氢键,能够增强聚乳酸复合材料的力学性能,淀粉颗粒中的直链淀粉的分子间也容易结合形成氢键,直链淀粉均匀分布在聚乳酸复合材料中,可以有效提高聚乳酸复合材料的抗剪切能力,将直链淀粉和聚乳酸混合,可以有效提高聚乳酸复合线材的韧性和抗折性,并且,淀粉和聚乳酸均可以生物降解,制成的聚乳酸复合线材可以自然降解,不会污染环境,具有良好的生物相容性。
一种烧结制备低温玻璃焊料片的方法及其应用,本发明涉及一种烧结制备低温玻璃焊料片的方法及其应用。本发明是要解决现有膏状玻璃料连接铝基复合材料产生气孔多、引入杂质及强度难以保证,玻璃粉造粒工艺复杂的问题。烧结方法:根据待焊试件的形状设计模具,将低温玻璃粉装入模腔内,在恒压块的作用下,在高于该低温玻璃粉软化点20~40℃的条件下进行烧结,得到玻璃焊料片。应用方法:将玻璃焊料片装配在待焊试件中间,置于焊接专用工装中,然后转移到大气烧结炉中进行烧结,烧结完成后中间形成低温玻璃焊料层,即得到焊接后的试件。本发明用于高体积分数铝基复合材料之间的连接或高体积分数铝基复合材料与玻璃的连接。
本发明公开了一种顺应性可调的多层复合人工血管的制备方法,属于人工血管技术领域,该制备方法包括以下步骤:(1)将PCL、PLA和TPU按照质量比为(7~9):(1~3):(0~2)共混造粒;(2)将料粒于190~220℃下融化、热压制得薄膜;(3)在实心圆柱外包裹铝箔纸层,再在铝箔纸层外包裹薄膜,然后再包裹一层铝箔纸层后置于空心圆柱内,然后放入高压反应釜中采用超临界CO2微孔发泡制得单层复合材料发泡管;(4)将三个不同弹性模量单层复合材料发泡管嵌套,相邻单层复合材料发泡管间的间隙填充凝胶或蛋白即得顺应性可调的多层复合人工血管。
本发明涉及一种铝基钎料、药芯铝基钎料及其制备方法,属于钎焊技术领域。本发明的铝基钎料,本发明的铝基钎料包括一层及以上的层状金属复合材料;所述层状金属复合材料包括基础铝层和在远离基础铝层的方向依次设置的第一铜层、调控层和第二铜层,所述调控层为铝硅调控层或铝银调控层,所述调控层用于使所述铝基钎料在钎焊时原位形成铝铜硅钎料或铝银铜钎料。本发明的铝基钎料的层状金属复合材料易于制备,相较于需要熔炼、挤压法制备的传统铝基钎料,不仅可以降低能耗,而且可以降低元素成分的控制难度,将铝、银、铜或铝、铜、硅的成分偏差均控制在0.2%以内,并且可以减少甚至避免CuAl2金属间化合物的形成,降低铝基钎料的加工难度。
本发明涉及一种热固/热塑共聚型复合泡沫及其制备方法和应用,制备方法:a、将空心微球与偶联剂混合后加热;b、将热固性树脂基体与固化剂搅拌混匀;c、将改性空心微球和树脂基体搅拌均匀,得到空心微球/热固性树脂;d、将发泡剂、经过改性处理的马来酸酐接枝聚丙烯和热塑性树脂基体搅拌混;e、将混合基料与空心微球/热固性树脂混合均匀;f、放入挤出机或注塑机制备成型材或片材;g、将型材或片材加热,得到新型的热固/热塑共聚型复合泡沫。本发明的复合泡沫能够广泛应用与热塑和热固性复合材料的夹芯泡沫结构,尤其适用于薄层的复合材料三明治结构,包括汽车内饰件、各类电子产品外壳、小型船舶的壳体、无人机的复合材料结构等领域。
本发明公开了一种耐高温紧固件及其制备方法,先用纤维预制体制备低密度碳碳复合材料,按照设计尺寸对低密度碳碳复合材料机加工紧固件坯体,并从紧固件坯体一端开槽;之后用石墨纸将槽封闭,采用CVD工艺在紧固件外表面沉积碳化硅涂层;再将槽内的石墨纸取出,在槽内加入硅粉、碳粉的混合粉或硅粉、碳粉和锆粉的混合粉进行从内向外的反应熔渗,制得耐高温紧固件。低密度碳碳复合材料机加工易于加工,采用从一端部开槽,从内向外部反应熔渗的方法制备紧固件可以有效的避免工艺对机加工的紧固件的形状、尺寸及精度的影响,避免二次加工的损伤,且缩短了生产时间,降低了生产成本。
本发明公开一种基于MOFs的复合热界面材料,原位生长于电子元器件与散热器之间,为纳米金属基MOFs复合材料、石墨烯‑MOFs复合材料、碳纳米管‑MOFs复合材料中的任一种。基于MOFs的复合热界面材料的制备方法,首先是配制金属有机配合物母液,然后滴加金属有机配合物母液,在基体表面原位生长MOFs膜,经过高温碳化后形成多孔隙泡沫状表面结构,所述基体为电子元器件或散热器。本发明充分利用Al‑MOFs的高孔隙率、低密度、大比表面积、孔道规则、孔径可调、拓扑结构多样性及可裁剪性等优点,增加电子元器件与散热器表面接触界面的连续性,其泡沫状孔道结构填充界面间未接触的孔道,大大降低界面接触热阻。
本发明提供了一种含Z‑pin的结构件及其制备方法,通过将Z‑pin植入泡沫载体中制成Z‑pin的泡沫预制体,然后再将Z‑pin的泡沫预制体中的Z‑pin植入腹板的预浸料和蒙皮的预浸料中,最后加热固化得到含Z‑pin的结构件,该制备方法可以显著地增强复合材料接头结构的连接性能和断裂韧性,并且抑制了层间分层的产生,同时该方法具有成本低、可操作性强、工艺简单以及可设计性强的优点,适用于诸如搭接接头、T型接头和复合材料层合板等任何需要增强力学性能的复合材料接头结构。
一种使用SiC-Si烧结块制备SiC增强熔炼铝合金的方法,先使SiC和Si混合均匀并烧结为坯料,然后投入熔融的Al液中,从而得到均匀弥散的SiC增强铝基复合材料。本发明中,SiC增强体的加入为通过Si包裹带人Al熔体中;通过先使SiC和Si烧结成坯料的方式,使被Si包裹的SiC添加到Al的熔体中,从而形成SiC增强铝基复合材料的方法,具有工艺简单,增强体弥散且分布均匀的特点,是一种可供工业化规模制备铝基复合材料的方法。
本发明涉及了一种用于T‑2毒素残留检测的电化学适体传感器的制备方法,包括以下步骤:以微波合成法制备功能化碳纳米材料,以水热合成法制备硫掺杂金属纳米片/碳纳米材料复合材料,取适量硫掺杂金属纳米片/功能化碳纳米复合材料/核酸适配体采用共价键合方式结合在金电极上制备得硫掺杂金属纳米片/功能化碳纳米复合材料/核酸适配体/金电极,以铂丝电极为对电极,饱和氯化银为参比电极,通过信号分子响应信号的变化得到了用于T‑2毒素残留检测的电化学适体传感器。本发明与传统T‑2毒素检测方法相比,具有响应速度快、检测限低、灵敏度高、重复性好、准确度高的优点。
本发明涉及一种碳纤维升降式避雷装置,包括杆体,所述杆体内设置有能够多级伸缩的升降杆,每级升降杆设置有差动滑轮组,所述差动滑轮组缠绕有钢丝绳,钢丝绳的另一端连接在驱动装置上;杆体的顶端可拆卸安装有接闪器;所述杆体以及升降杆均为至少包括改性碳纤维骨料与环氧树脂的碳纤维复合材料,其中改性碳纤维为表面涂覆改性碳纤维;制备方法是,利用倍伴硅烷对碳纤维表面改性后与环氧树脂混合制备成碳纤维复合材料;改性后的碳纤维复合材料用于制作防雷设备;本发明具有耐腐蚀性强、使用寿命长、耐候性以及机械性能优的优点。
中冶有色为您提供最新的河南有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!