本发明属于锂电池技术领域,具体涉及一种掺杂碳纳米材料的石墨电极复合材料,所述复合材料包括石墨、碳纳米角、碳纳米管和石墨烯纳米片,石墨构成所述复合材料的主体,碳纳米角、碳纳米管和石墨烯纳米片填充到石墨构成的主体的材料间隙中搭建成三维桥联结构;本发明的石墨烯、碳纳米管和碳纳米角共同填充在石墨颗粒的间隙中,同时起到提升复合材料的导电性、离子导电率及热导率的作用,由于增加了导热率从而实现电池安全性的提升,增加了导电率实现了快充,而离子导电率的提高提升了能量密度,可以减小负极材料因充放电循环导致的结构坍塌,从而提升电池的循环寿命、提高了电池的使用寿命。
本发明公开了高致密化定向排列Ti2AlC/TiAl仿生复合材料及其制备方法,原位生成的Ti2AlC颗粒以定向排列的层状结构分布TiAl基体中,两者形成具有层状结构特征的仿生复合材料。本发明制备方法主要包括:首先将Ti粉、Al粉和单层/少层超声分散石墨烯纳米片粉低能球磨得到复合粉体,然后将复合粉体置于包套中,室温压制真空密封后进行半固态热挤压以得到层状TiAl/C棒材,随后结合真空烧结反应合成和热轧制技术制备出高致密化定向排列Ti2AlC/TiAl仿生复合材料。本发明通过半固态热挤压变形以及真空烧结反应合成体系,制备出具有轻质、高强韧、致密均匀特点的高致密化定向排列Ti2AlC/TiAl仿生复合材料,并且具有工艺简单,制备成本低和构型可控强等优点。
本发明公开了一种钌/氧化钌修饰的氮掺杂石墨烯三维复合材料,该复合材料由RuCl3·3H2O、氧化石墨烯、聚吡咯在去离子水中经水热反应得到气凝胶,再将气凝胶和碳酸钙氧化得到最终产物。该材料作为催化剂具有双活性中心,在电催化分解水过程具有过电位低、活性高、稳定性好的特点。本发明还公开了该复合材料的制备方法,制备过程操作简单、成本低、反应过程可控且产率高。本发明还提供了钌/氧化钌修饰的氮掺杂石墨烯三维复合材料作为催化剂在电催化分解水的应用,催化剂在不同电解液中均表现出良好的HER、OER性能和良好的稳定性。本发明公开的低过电位、双功能电催化剂对于降低能耗和简化整个电解水系统设计具有重要意义。
本发明提供一种热塑性聚氨酯纤维复合材料,它包括低熔点聚醚型聚氨酯薄膜层和嵌入到该低熔点聚醚型聚氨酯薄膜层内部的高熔点无纺布。其中,所述高熔点无纺布为纯高熔点聚醚型聚氨酯无纺布或复合型高熔点聚醚型聚氨酯无纺布。本发明还提供一种制备上述复合述材料的方法,具体步骤包括:提供一种高熔点无纺布;在真空条件下将混合有聚氨酯橡胶硫化剂的熔融态低熔点聚醚型聚氨酯材料浸入到所述高熔点无纺布中,经模具定型制得热塑性聚氨酯纤维复合材料。该制备方法工艺简单、适于自动化生产。本发明还提供一种该复合材料的应用。该热塑性聚氨酯纤维复合材料各层之间结合紧密,可作为风力发电机叶片保护膜使用。
本发明公开了纳米材料技术领域的一种氧还原催化剂纳米复合材料的制备方法,所述氧还原催化剂纳米复合材料的制备方法的具体步骤如下:S1:将氧化铝模板用环氧树脂和固化剂固定在玻碳电极表面;S2:得到纳米线阵列电极;S3:将玻碳电极的表面经过机械研磨处理;S4:将经过抛光处理后的玻碳电极在超声水浴中清洗;S5:用循环伏安法活化;S6:以循环伏安法沉积纳米颗粒,制备出纳米粒子电极;S7:将步骤S2中制备出的纳米线阵列电极和步骤S6中制备出的纳米粒子电极利用循环伏安法25~30个循环制备纳米复合材料,本发明制备方法简单,成本低,采用氧化还原催化剂替代铂催化剂,得到的纳米复合材料粒径分布均一,重现性好。
本发明涉及非织造复合材料领域,特别是指一种具有非对称传输的非织造复合材料及其制备方法。所述非织造复合材料包括自上而下的水平扩散层和垂直渗透层,所述水平扩散层为水平分支结构的PEG/PP熔喷超细纤维材料,垂直渗透层为热风非织造材料。本发明的一种非对称传输的非织造复合材料包括依序叠层复合固结的垂直扩散层和水平扩散层,具有克数小、厚度薄、水平扩散速度快、柔且软的特点,尤其适用于纸尿裤、卫生巾等吸收性卫生产品。
本发明公开了一种抗静电碳纳米材料-聚四氟乙烯复合材料的制备方法,步骤如下:将碳纳米材料在液体介质中分散后,按其质量百分比为0.5~2%的比例与聚四氟乙烯粉体及其它原料混合后在40~100℃下干燥,将干燥的混合原料置于模具中,在45~70MPa下压制,并在370~385℃下烧结,即获得本发明所制备的抗静电碳纳米材料-聚四氟乙烯复合材料。本发明只需引入低含量的碳纳米材料,应用石墨烯、碳纳米管等碳纳米该材料的高导电性和可高效构成导电网络的维度特性,不改变PTFE成型件及膜材料的基本制备方法,即可制得具有低表面电阻率的抗静电复合材料;同时,受益于碳纳米材料的强韧化效应,复合材料的力学性能和摩擦磨损性能不受任何影响。
一种纤维增强防弹复合材料及其制备方法,本发明通过2.5D纤维织物Z向纱线编织角的优选,使复合材料具有优良的防弹性能,进一步,本发明采用真空辅助工艺制备纤维增强防弹复合材料,有效的提高了生产效率和成型质量,且可实现大尺寸、异型防弹结构的一次成型,纤维增强防弹复合材料可用于不同部位特别是结构复杂部位的抗侵彻防护,具有广阔的军事应用前景。
本发明公开了一种铁镍电池负极复合材料及其制备方法,该负极复合材料由5wt%~30wt%的锡酸盐化合物和70wt%~95wt%的活性四氧化三铁组成,具体制备过程为:将三价金属氧化物与锡酸钾或锡酸钠水溶液混合形成浆料后,经蒸发干燥、高温烧结后得到锡酸盐化合物;再将锡酸盐化合物与四氧化三铁粉体混合球磨后得到铁镍电池负极复合材料。本发明制成的铁镍电池能有效降低充电电压和提高克容量,并能提升化成速度和放电平台且可减少析气量。
本发明涉及一种耐磨刀具用石墨烯增强钴基复合材料的制备方法。石墨烯增强钴基复合材料以高纯电解钴片为基体,以氧化石墨烯、钨、铬、硅、锰、铁等粉体颗粒为增强相,所述制备方法将高纯电解钴片通过高能行星球磨方式制备得到高纯钴粉体,与增强体以适当配比在真空热压炉中,保温保压,将粉体一步到位制成坯料,减少工艺步骤,缩短了生产周期,且工艺流程简单,工艺参数稳定,节约了成本;石墨烯增强钴基复合材料质量优越,耐磨性和切削性能好,高温力学性能优越,是理想的耐磨刀具、切削刀具及其他耐磨部件用合金材料。
本发明专利公开了一种改性ABS复合材料,该改性ABS复合材料由以下重量份的原料组成:ABS树脂80‑100份,玻璃纤维8‑20份,空心玻璃微珠5‑15份、光稳定剂0.2‑0.8份,钛白2‑8份,抗氧剂0.4‑1.0份,增韧剂4‑12份,润滑剂0.1‑0.5份;本发明同时提供了改性ABS复合材料的制备方法及其在天线罩上的应用,该材料利用空心玻璃微珠和玻璃纤维的功能性填料作用,再配合以光稳定剂、钛白、抗氧剂、增韧剂等,具有更低的介电损耗,高透波性,满足5G产品的低介电、低损耗、高透波、环保的同时降低产品重量,而且本发明的制备方法简单,成本低,适合工业化生产和应用。
本发明提供一种低成本制备低密度高热导率的金刚石/铜复合材料的方法,包括以下步骤:金刚石破碎料的预处理;采用直流磁控溅射法在金刚石表面镀钨,制备包裹单质钨薄膜;在真空管式炉中退火处理,使金刚石表面的钨单质转化为碳化钨;将包裹好碳化钨的金刚石和铜粉按照3:1~4:1的质量比充分混合,压成圆柱;随后采用六面顶压机进行高温高压工艺,得到金刚石/铜复合材料。本发明选用金刚石破碎料作为原料,极大降低了成本;采用高温高压工艺合成金刚石复合材料,致密度高、制备时间短、效率高;制备的样品密度低、热导率高,该方法操作简单,制作成本低,可以大规模批量生产,具有广阔的工业应用前景。
本发明属于纳米复合材料的制备领域,尤其是一种高强度导电高分子纳米复合材料的制备方法,针对现有的纳米复合材料的强度及导电性均较差的问题,现提出如下方案,其包括以下步骤:S1、准备原料和纳米铜线,原料包括以下重量份的材料:加强剂30‑40份、增韧剂5‑10份、抗冲击剂5‑10份和导电增强剂1‑5份,加强剂包括碳纤维、氧化铝纤维、硼酸镁晶须、聚氨酯树脂、纳米二氧化硅、石英砂;增韧剂包括纳米碳酸钙、氧化锌、聚乙烯醇缩丁醛、聚丁二烯橡胶;抗冲击剂包括乙烯丙烯橡胶、高密度聚乙烯、聚丙烯、甲基丙烯酸甲酯‑丁二烯‑苯乙烯共聚物,本发明极大的提高了材料的强度和导电性能,制备方法简单。
本发明公开了一种碳纳米复合材料及其在电池方面的用途,制备方法如下:对碳纳米管进行前处理,与混合酸混合,制得酸化碳纳米管;再制备SnO2;将酸化碳纳米管与SnO2混合,加入去离子水中,超声分散,水浴加热,滴加碱液使溶液呈碱性,将溶液过滤并洗涤至中性,先低温烧结再高温焙烧得到碳纳米复合材料。本发明制备的碳纳米复合材料在扫描电压为0.02‑2.5V,电流密度为25mA/g时,初始放电量可达1800mAh/g(远大于SnO2的200mAh/g和天然石墨的372mAh/g),经过3000次循环后,容量仍约为1710mAh/g,具有良好的循环稳定性。
本发明公开了一种高性能聚碳酸酯复合材料及其制备方法及应用,所述复合材料按照质量百分比计,由以下原料组成:聚碳酸酯77.8~84.7%、壳聚糖/粘胶纤维7~11%、聚乙烯6~8%、2, 6?二叔丁基?4?甲基苯酚0.5~0.8%、阻燃剂0.2~0.3%、抗静电剂1.6~2.1%;阻燃剂由聚硅硼氧烷、磷酸三苯酯混合而成;抗静电剂由聚氧乙烯硬脂酸酯、脂肪醇聚醚酰胺混合而成。本发明复合材料具有好的力学性能、抗菌性能、阻燃性能和抗静电性能,适合用作汽车内饰用材料。
本发明公开了一种氧化石墨烯增强石膏复合材料及其制备方法,属于医药生物材料技术领域。本发明的技术方案要点为:一种氧化石墨烯增强石膏复合材料,是由氧化石墨烯与石膏复合而形成的,其中氧化石墨烯的掺入量为石膏质量的0.06%-0.12%。本发明还公开了该氧化石墨烯增强石膏复合材料的制备方法。本发明通过将氧化石墨烯复合至石膏胶凝材料中,可以有效提高石膏的抗弯、抗压强度,从而改善石膏的力学性能,进一步扩大石膏的应用领域。
采用复合材料的汽车底盘承重装置,涉及复合材料制品领域,包括底盘连接杆,底盘连接杆的上端面开设有通槽,通槽内设有横杆,横杆上滑动连接有滑块,横杆上套设有两个第一弹簧,两个第一弹簧分别位于所述滑块的两侧,滑块的顶面通过铰接座转动连接的缓冲筒,缓冲筒外侧套设有固定环,固定环的内侧面通过若干第二弹簧与缓冲筒的外侧壁连接,固定环外侧壁对称设有一对固定支杆,固定支杆另一端与底盘连接杆连接,本实用新型一种采用复合材料的汽车底盘承重装置,本实用新型中的汽车底盘的承重装置具有结构简单,承重负载性能强,减震效果好的特点,满足了人们的使用需求。
本发明涉及农林生物质增强的可降解的聚合物复合材料及其制备方法、用途。该复合材料采用含有木质素、纤维素、半纤维素的农林生物质物作原料,以可降解材料聚碳酸亚丙酯为基体,农林生物质原料经历汽爆/不汽爆后,与基体聚碳酸亚丙酯原料在发泡剂、偶联剂、填料存在/不存在的条件下,熔融共混制得多孔材料、普通发泡材料、双孔发泡材料、装饰材料。本发明工艺简单,适用范围广,材料具有较好的尺寸稳定性、表面光滑细腻均匀,由于农林生物质和基体原料都是可以降解的材料,所制备的复合材料可以自然降解。
本发明公开了一种金刚石/铜复合材料的制备方法,采用的振荡热压烧结方法,与无压熔渗法、放电等离子烧结法相比,具有能够制备出界面结合强度更高,热导率更高同时致密度更高的金刚石/铜复合材料。振荡压力相比于静态压力能够促进金刚石颗粒在烧结过程中发生颗粒重排现象,制备出的金刚石/铜复合材料中金刚石颗粒的分布更加均匀。
本发明属于高分子材料技术领域,公开了一种抗磨抗静电聚醚醚酮基复合材料及其制备方法和应用,其制备方法包括:自润滑聚醚醚酮和碳纤维通过机械研磨混合均匀,获得混合粉末;随后将混合粉末置于压力为10~20MPa的真空条件下进行热压烧结处理,获得所述抗磨抗静电聚醚醚酮基复合材料。本发明复合材料具有摩擦系数低、磨损率低、摩擦静电小等特点,而且制备工艺简单、可控性好。该材料适合在常温及60℃~260℃下使用。作为固体润滑材料在航空航天和汽车制造领域具有重要的应用前景。
本发明公开了一种烧结过渡金属高熵陶瓷氧化物复合材料的制备方法,涉及高熵陶瓷材料技术领域。包括以下步骤:S1、分别称取MgO、CoO、NiO、CuO、ZnO粉体原料,均匀混合后,获得混合粉体;S2、对S1获得的混合粉体预压制坯后,于900~1300℃烧结0.5~1.5h,所述烧结采用微波进行烧结。即得(MgCoNiCuZn)O高熵陶瓷氧化物复合材料。本发明提供的制备方法制得(MgCoNiCuZn)O高熵陶瓷氧化物复合材料,有效的降低了(MgCoNiCuZn)O高熵陶瓷氧化物的合成成本,提高了合成效率。
本发明提供了一种耐高温阻燃尼龙‑石墨烯复合材料,它由包括以下重量份的组分制成:尼龙盐95~105份、氧化石墨烯2~10份、海泡石粉4~8份、膨胀石墨3~8份、硅烷偶联剂KH560 2~6份、固含量为20%~25%的纳米碳溶胶1~4份、纳米二氧化钛1~4份、硅灰石粉2~5份、封端剂0.2~1份、6‑氨基己酸0.1~0.6份、去离子水40~70份。本发明还提供一种上述耐高温阻燃尼龙‑石墨烯复合材料的制备方法。本发明提供的上述耐高温阻燃尼龙‑石墨烯复合材料具有比较好的阻燃、耐高温以及力学性能。
本发明提提供了一种取向化氧化镍/PEDOT复合材料及制备方法,采用定向凝固结合热压法制备取向化氧化镍/PEDOT复合材料,将表面改性后的一维氧化镍纳米线粉体置于PEDOT、酒精、丙三醇组成的混合溶剂中,之后将此容器置于特定方向温度梯度的环境中,从而实现一维填料沿温度梯度方向定向生长,生长完成后放入低温低压环境中升华;再将此材料置于50‑80℃温度条件下3Mpa‑10Mpa的压力下3‑10min,得到具有取向结构的一维氧化镍/PEDOT复合材料。该材料的热电性能优异。该方法具有简单易行、成本低、方便快速、制备的样品气敏性能优异等优点,可规模化生产。
本发明涉及一种弹体侵彻金属/块石复合材料靶板的数值模拟方法,包括以下步骤:步骤S1:采用对称罚函数法计算弹体与靶板的侵彻,接触类型为面~面侵蚀接触;步骤S2:建立材料的数学模型,包括靶板金属材料模型、弹体金属材料模型和靶板中的块石材料模型;步骤S3:建立材料的有限元模型;步骤S4:数值模拟。本发明的有益效果是:本发明提出的数值模拟方法是根据金属基块石复合材料的结构特点设计的,所设计的材料本构模型能较好地反映材料的真实性能,经过与大量试验的结果比较,模拟结果与试验结果基本吻合,能较好的反映弹体侵彻金属/块石复合材料靶板的全过程。
一种具有高比表面积硅碳负极复合材料的制备方法,经历银诱导腐蚀纳米多晶硅粉制备多孔硅、溶液A配制及制备硅碳负极复合材料三大过程,在银诱导腐蚀纳米多晶硅粉制备多孔硅过程中又经历酸洗、沉积银溶液配制、沉积、混合腐蚀溶液配制及化学腐蚀五小过程,制备的硅碳负极复合材料呈核壳结构,内核为多孔硅而外壳为丙烯腈/碳纳米管,多孔硅结构有效缓冲了锂离子电池在充放电过程中的体积膨胀,为锂离子电池中锂离子迁移提供了快速通道,包覆层丙烯腈裂解后形成的无定型碳则具有层间距大的特性,可以提高锂离子电池的传输速率。碳纳米管的纤维网状结构可以提高锂离子电池的导电性及包覆层的结构稳定性,最终提高锂离子电池的吸液能力和倍率性能。
本发明公开了一种稀土氧化物掺杂钼铜合金复合材料及其制备方法。该复合材料由以下质量百分含量的组分组成:铜10%~39.9%,稀土氧化物0.1%~3.0%,余量为钼和不可避免的杂质。本发明的稀土氧化物掺杂钼铜合金复合材料,由钼、铜和稀土氧化物组成,稀土氧化物作为第二相掺杂加入钼铜合金中,显著提高了钼铜合金的烧结性能,钼和铜包覆在稀土氧化物周围形成发育完整的晶体,钼元素和铜元素之间在稀土氧化物的作用下具有较好的润湿性,实现了钼与铜的分子级混合,大大提高了钼铜合金的致密性,最终钼铜合金的强度、韧性和导热导电性能得到显著提高。
本发明涉及一种聚氯乙烯耐热防火复合材料及其制备方法,该复合材料主要由以下质量份数的原料制成:聚氯乙烯树脂100份、丙烯酸酯橡胶3‑10份、硅橡胶20‑30份、玻璃粉2‑5份、硅灰石5‑10份、石墨烯片1‑2份、硼酸锌2‑4份、氢氧化铝2‑5份,液体石蜡1份、热稳定剂1‑2份、润滑剂1‑2份、硅烷偶联剂0.4‑1.0份。经共混改性所得复合材料的极限氧指数在40%vol左右,UL 94达到V‑0,维卡软化温度达到98℃以上,热稳定时间长;拉伸强度在60MPa左右,断裂伸长率在11%‑12%,冲击强度达到20KJ/m2,弯曲强度达到75MPa以上,兼具良好的耐热防火性能和力学性能。
本发明公开了一种秸秆纤维/废旧塑料复合材料,由以下步骤制备:(1)秸秆切割成2‑4cm小段,废旧塑料粉碎成粒径为1‑3cm颗粒,按照重量比为1:2‑3混合均匀;(2)在蒸汽压力为1.5‑3.0Mpa的条件下维持300‑400s,然后瞬间弹射蒸汽爆破,得秸秆纤维/废旧塑料复合材料。该秸秆/废旧塑料复合材料是采用瞬间弹射蒸汽爆破技术处理得到的,能充分的将废品加以利用,制备的板材强度高,性能优异,经济环保。
本发明涉及生物医用材料,具体公开了一种包装用聚乳酸复合材料及其制备方法,该韧性包装用聚乳酸复合材料包括PLA、PBAT、PEG、增容剂按相应比例制备而成;其制作工艺简单,可量产,PBAT作为增韧剂,在增容剂的作用下,降低PLA与PBAT两相之间界面力,同时,借助增容剂与PLA、PBAT之间的作用力进一步均匀分散韧性介质,大大提升了PLA材料的韧性,且复合材料的熔融指数也有所提升。
中冶有色为您提供最新的河南有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!