本发明提供了一种含镍钴锰的废旧锂电池的回收处理工艺,首先将电池破碎并分选出活性物质粉和含铜铝的混合粉末,之后将活性物质粉与煤炭按一定的质量比加入至温度为750~850℃的焙烧炉中焙烧,将焙烧产物按一定的液固比加入到碳酸钠水溶液中并充入CO2气体进行搅拌,过滤得到碳酸氢锂水溶液和镍钴锰滤渣,接着将镍钴锰滤渣、造渣剂和煤炭按一定的质量比加入到温度保持为1500~1600℃的富氧侧吹炉内,同时充入富氧空气并保持炉内为还原气氛,直至熔池内的镍、钴、铜元素形成镍钴铜合金,其余锰、铁、铝金属元素以氧化物形式形成锰渣上浮进入渣层,最后升温达到1650~2000℃,将锰渣放出并以水淬方式降温再收集。本发明方法,工艺简单新颖,污染小,安全性高。
本发明公开了一种锂离子电池的正极三元材料的改性方法,包括以下步骤:步骤(1):将正极三元材料分散在溶剂中,随后投加表面活性剂,得到悬浮液;步骤(2):向悬浮液中滴加Al2O3凝胶,在30~80℃温度下包覆,随后干燥制得Al2O3表面包覆改性的复合正极三元材料。本发明采用纳米Al2O3凝胶进行液相包覆,并与表面活性剂协同配合以及控制包覆温度,有效保证了包覆层的均匀度。
本发明公开了一种废旧锂离子电池的溶剂分选预处理方法,包括以下步骤:步骤1、放电;步骤2、拆解切割;步骤3、溶剂分选;步骤4、水筛选:把步骤3得到的滤渣放入筛网,以纯水冲洗作为动力进行筛分,筛上物为铝箔、铜箔,筛下物为正负极活性物质。本发明的废旧锂离子电池的溶剂分选预处理方法具有绿色环保、处理周期短、分离效率高和成本低廉的特点。
本发明涉及一种热水器,具体是指一种直燃溴化锂冷温水机的高温发生器热水恒温装置。它主要由筒体(5)、换热管束(8)组成。其特征在于还有凝结水盘(7)、凝结水管(6)、电动调节阀(2)、回流管(3),温度传感器(15)、计算机主板(PLC),凝结水盘(7)位于高温发生器(4)筒体(5)内的上部,内置有换热管束(8),换热管束(8)两端分别固定在前管板(10)和后管板(11)上,在凝结水盘(7)下部接有凝结水管(6),凝结水管(6)的另一端在筒体(5)外与电动调节阀(2)进水端相通,电动调节阀(2)的出水端通过回流管(3)与筒体(4)内相通。本发明由于结构简单、通过凝结水来实现水温的调节是非常简便而有效的方法。
本发明公开了一种高功率型的锂离子电池用正极材料的制备方法,包括如下步骤:(1)采用共沉淀法合成NixCoyMz(OH)2前驱体,前驱体的中心部由微小粒子组成,外壳部由粒径比该微小粒子更大的大粒子组成;(2)将前驱体与锂盐混合均匀,混合时加入掺杂元素的氧化物,然后进行烧结,得到LiaNixCoyMzO2正极材料。该正极材料为呈中空微球结构的二次颗粒,二次颗粒的外壳部分由若干一次颗粒聚集而成,颗粒大小均匀,表面疏松多孔,比表面积高,且得到的颗粒形状规则,材料结构稳定,拥有较高的倍率性能和优异的循环性能。该制备方法的工艺简单,成本低廉,可工业化生产。
本发明属于物理改性硅废物回收技术领域,具体涉及一种硅割切废屑制备锂离子电池纳米硅负极材料的方法:将硅割切废屑与结构稳定剂混合,球磨整形,得整形料;随后再进行物理改性处理以及化学改性处理,即可获得高性能的硅负极材料。本发明还提供了所述的制备方法制得的硅负极材料以及在锂离子电池中的应用。本发明提出了一种利用硅割切废屑和所述的结构稳定剂进行整形、以及物理和化学改性的创新工艺,且发现该创新工艺能够出人意料地制得具有良好纳米形貌、导电性优异、具有高容量和长循环稳定性的电池级纳米硅材料。
本发明属于锂离子电池隔膜材料技术领域,具体涉及一种PMMA交联球形微粉涂层隔膜,包括多孔基膜,以及复合在基膜至少一个表面的改性层,所述的改性层包括粘结剂以及呈单层紧密排列的若干PMMA交联球形微粉。本发明还提供了一种所述的涂层隔膜的制备方法和在锂离子电池中的应用。本发明创新地采用PMMA交联球形微粉作为改性层的唯一涂层粉料,且进一步发现,将其在基膜表面单层紧密排布,可以有效解决隔膜热收缩问题,不仅如此,还能够显著降低隔膜水分含量、改善涂层的透气性。
本发明公开了一种掺杂ⅢA元素的锂离子筛及其制备方法和用途,该方法包括以下步骤:将锰源与锂源混合,研磨均匀;加入ⅢA元素的盐或单质,研磨均匀,然后干燥;干燥后的原料干磨成粉末,在氧气或空气氛围中、300~800℃分段焙烧0.5~16h,冷却后得到离子筛前驱体;离子筛前驱体酸洗4~12h,过滤、干燥后得到离子筛;所述ⅢA元素的盐或单质是Na2B4O7·10H2O、硼粉、硫酸铝、氢氧化铝、氯化镓、硝酸镓、氢氧化铟或三氟乙酸铊中的一种以上。用本发明制备的离子筛产品4h吸附量接近20mg/g,酸洗锰损失相比λ‑MnO2作为离子筛减少1倍,优于LiMn2O4作为前驱体制备离子筛的吸附性能。
本发明实施例提出了一种用于锂电池容量估计的间接健康因子选取方法,包括:计算多个备选间接健康因子与电池容量的关联度;从所述多个备选间接健康因子中选择所述关联度最大的N个所述备选间接健康因子作为初始间接健康因子;将所述初始间接健康因子以及与所述初始间接健康因子对应的所述电池容量作为相关向量机模型的输入,以对所述相关向量机模型进行模型训练得到目标训练模型;判断所述目标训练模型是否满足所述预设精度要求;若所述目标训练模型满足所述预设精度要求,将所述初始间接健康因子作为目标间接健康因子以用于锂电池容量估计;以及若所述目标训练模型不满足所述预设精度要求,更新N=N+1。本发明实施例可以很好地解决间接健康因子选择的问题。
本发明属于锂硫电池电极材料领域,具体涉及一种碳@硫化丙烯腈基聚合物复合正极活性材料,包括多孔碳材料,以及原位填充在多孔碳材料孔隙中的硫化丙烯腈基聚合物。本发明还提供了一种通过溶液吸附‑喷雾‑硫化手段的制备方法。本发明所述的正极活性材料具有硫和碳结合紧密、导电性好和振实密度高等特点,进而有助于显著提升所述正极活性材料制备的锂硫电池的倍率性能和循环性能。
本发明涉及一种以菌渣废料为原料制备多元掺杂层次孔碳的方法,并将其应用于锂电池负极材料。步骤包括:将单种菌渣废料干燥、球磨后,与金属盐和无机碱进行混合并高温煅烧处理,然后用无机酸除去金属杂质,得到多元掺杂的层次孔碳。本发明制备得到的层次孔碳具有多元素掺杂,同时存在丰富的微孔、介孔和大孔,特别适合应用于锂离子负极材料。本发明原料来源广泛、工艺简单、操作方便、成本低、所得产品性能优良、易于扩大化生产。
本发明提供了一种锂电专用高循环特种陶瓷坩埚,该坩埚包括表面工作层和基体层,表面工作层原料包括高岭土、白刚玉、氧化铝微粉、电熔莫来石、粘结剂、锂辉石粉、堇青石和水,基体层原料包括烧结莫来石、高岭土、氧化铝微粉、碳酸镁、堇青石、滑石、电熔镁铝尖晶石、红柱石、粘结剂和水,本发明还提供了上述坩埚的制备方法。本发明坩埚表面工作层材料采用耐腐蚀材料细颗粒为主料,基体层材料采用热膨胀系数小、耐温高的材料为主料,减缓了底部起皮和粘料的时间,解决侧面和底部开裂现象,坩埚坯体具有一定的强度,坯体干燥后再放入窑中烧结,烧成后的坩埚底部平整度相比其他窑炉烧成的效果好,能够满足用户全自动化流水线生产模式的生产。
本发明公开了一种适用于干燥锂离子电池正极材料的真空干燥机及其应用方法,真空干燥机包括筒体,筒体上设搅拌装置,搅拌装置包括搅拌驱动机构,搅拌驱动机构输出端连接搅拌轴,搅拌轴的下端安装搅拌桨,搅拌桨包括沿搅拌轴的周向设置的第一搅拌桨和第二搅拌桨,第一搅拌桨上开有通孔,第二搅拌桨的下沿设有第一开口槽。该真空干燥机通过设置第一搅拌桨和第二搅拌桨,并在其上分别设置通孔和第一开口槽,第二搅拌桨上设置第一开口槽可有效提高搅拌时对物料的耙散效果,第一搅拌桨上设置通孔可使开口槽轨迹上的物料向上翻动,提高搅拌分散效果。该真空干燥机用于干燥锂离子电池正极材料颗粒时,可有效提高搅拌分散均匀性、提高干燥效率。
一种锂离子电池镍钴二元氧化物正极材料前驱体的制备方法。本发明以废旧三元锂离子电池为原料,碱性浸出使得后续再生前驱体过程中无需调节pH值,且浸出液中的氨能够调节前驱体形貌,选择性浸出镍钴。利用本发明,无需进行复杂除杂工序,经喷雾干燥法直接制备镍钴前驱体;操作流程简单可控,可节约碱液,对设备无腐蚀性,不会产生大量有毒有害气体,对环境友好,产生附加值高的镍钴前驱体,并且无需面临废液处理排放问题,节约生产成本。
本发明公开了一种锂电池咪唑离子电解液及其制备方法,包括锂盐、离子液体混合溶剂和功能添加剂。与现有技术相比,本发明的有益效果为:本发明的咪唑离子电解液难挥发,热稳定性好,电导率高;功能添加剂的添加提高电解液的循环性能,提高电池的充放电容量和效率。
本发明提供了一种锂离子电池正极材料球形颗粒造粒方法,包括如下步骤:S1:将锂离子电池正极材料、导电炭黑和/或粘接剂混合均匀,即正极浆料;或直接以废旧正极浆料为原料;S2:将所述正极浆料或废旧正极浆料,干燥、粉碎,然后焙烧获得球形正极材料。本发明的上述方案不同于传统的正极材料造粒方法,以导电炭黑为引发剂,与正极材料和/或粘接剂混合均匀后进行焙烧,在热的驱动下自发形成球形颗粒;工艺简单,流程短,材料颗粒球形度好,可快速制备高压实密度的电极材料。
本发明提供一种基于熔盐体系的废旧锂电池正极中有价组分回收方法,该方法包括废旧锂电池正极的热处理与细磨、熔盐粉末的制备、正极粉末与熔盐粉末及氯化铵的混料压球、球团热处理分离熔盐与正极粉末以及处理后正极粉末的水浸等步骤。本发明可以实现正极铝集流体以Al(OH)3直接回收,同时还可以使正极中有价元素Li、Ni、Co与Mn全量回收。
本发明涉及一种热稳定的锂离子电池隔膜及其制备方法,由共聚聚酰亚胺或共混聚酰亚胺制备而成,其玻璃化转变温度大于260℃,200℃加热1小时后尺寸变化率小于0.2%,分解温度大于500℃,机械强度20‑50Mpa,吸液率大于100%,混合电解液在隔膜上的静态接触角为0‑15°。所述热稳定的电池隔膜是一种各向同性的具有均匀孔结构、高孔隙率的多孔膜材料,同时具有良好的尺寸稳定性、热稳定性、润湿性、吸液率和耐溶剂性,可应用于小型和动力锂离子电池,起到提高电池安全性、电池循环性能和充放电性能等作用。
本发明公开了一种锂离子电池用三相复合负极材料的制备方法,先将硬碳、针状焦生焦、天然石墨微粉进行混合,然后将三相混合料与改性剂进行混捏得到湿料,再将湿料转入融合机中进行表面复合改性,将表面改性的三相混合料和沥青进行混合,然后在惰性气氛下,边搅拌边加热至500~600℃,并保温1~2h,得到三相转炉料;三相转炉料经分级、石墨化、筛分得到锂离子电池用三相复合负极材料。本发明克服了现有三相复合技术所存在的快充性能、高低温性能差的缺点。
本发明公开了一种沥青碳包覆天然混合石墨材料及其制备锂离子电池负极的方法。沥青碳包覆天然混合石墨材料的制备过程为:将微晶石墨和鳞片石墨球磨混合,得到混合石墨粉;混合石墨粉与沥青液及有机溶剂进行溶剂热反应,得到前驱体材料;前驱体材料经过预碳化和碳化处理后,采用酸提纯,即得。该方法简单,成本低廉,可规模化生产;制备的沥青碳包覆天然混合石墨材料具有平均层间距大、比表面积适中、导电性好等优点,作为负极材料用于制备锂离子电池,展示出良好的循环稳定性和高比容量,具有规模化应用前景。
本发明提供了一种锂离子电池用正极活性材料及制备方法,材料由层状氧化物内核——含尖晶石结构的氧化物过渡层——纳米碳包覆外层形成的复合结构,层状氧化物内核的化学通式为Li[Li1-x-yMnxMy]O2,尖晶石结构的氧化物过渡层的化学通式为LiMnxM2-xO4。本发明通过原位碳还原法,借助高温下碳的还原作用诱导层状结构向尖晶石结构转变,成功制备出层状/尖晶石/碳复合纳米结构正极材料。本发明材料的锂离子电池具有良好的倍率性能和循环性能,同时本发明材料也有良好的界面稳定性,制备方法工艺流程也得到了简化。
本发明公开了一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用。该复合采用具有核壳结构,内核和外壳均由表面多孔的碳化钼掺杂碳材料构成,其制备方法是将钼酸盐溶液与树脂溶液混合,得到悬浮液,所述悬浮液通过溶剂热法合成球形前驱体;所述球形前驱体置于保护气氛中,在高温下进行热处理,即得导电性能好、比表面积大及催化活性高的碳化钼/碳复合材料,将其用作锂空气电池催化剂材料具有较低的过电位,高比容量以及优异的循环性能,且其制备方法简单,成本低廉,具有广阔的工业化应用前景。
一种锂离子电池用镍钴锰三元正极材料及其制备方法,所述三元正极材料由以下方法制成:(1)将镍源、钴源、锰源和软模板溶于多元醇中,得混合溶液;(2)进行回流反应,冷却,离心,洗涤,干燥,得金属醇盐;(3)在空气或氧气中煅烧,冷却,得前驱体;(4)与锂源分散于低级醇中,加热搅拌至蒸干,得黑色粉末;(5)在空气或氧气气氛中煅烧,冷却,即成。本发明材料前驱体和三元正极材料颗粒均匀,均呈空心球状结构;所得三元正极材料组装成电池,在3.00~4.40V,15mA/g下,首次放电克容量可高达196mAh/g,首效可高达81.5%,循环20圈,保持率可高达95%;本发明方法简单,成本低,适用于工业化生产。
本发明公开了一种水热法制备锂电池钒酸盐正极材料的方法,该方法包括如下步骤:将偏钒酸铵和过氧化氢溶液混入35ml去离子水中,在室温条件下搅拌,直至得到澄清的黄色溶液,然后将化学计量比的可溶性盐加入上述溶液中,继续搅拌使之混合均匀;之后,将所得溶液转至50ml高压釜中进行水热反应;水热或水热后烧结得到锂电池钒酸盐正极材料。本发明制备的AgVO3,Na0.33V2O5等钒酸盐正极材料具有较好的电化学性能,并且制备周期短,工艺简单,产物的产率大且纯度高。
本发明公开了一种硅基负极锂离子电池及其制造方法。包括正极片、负极片、隔膜,以及电解液,其负极片包括负极集流体和分布在负极集流体上的负极活性物质,负极活性物质中包含碳硅复合材料;负极片中的活性物质涂层具有石墨涂层和硅碳负极涂层,构成具有复合涂层结构的负极片。并且在制作过程中加入含复合添加剂的电解液和首次充电时采用多段充电活化方式。本发明有利于提高硅碳复合负极的粘结性、加工性能,增强充放电过程中对体积变化的缓冲能力,提高硅基负极与电解液的相容性,改善负极表面SEI膜的形成与稳定性,提高硅基负极锂离子电池的电化学性能。
本发明提供了一种多功能混合机及一种合成钛酸锂负极材料的方法,该多功能混合机包括分散罐、机体和中空主轴,还包括换热器、接受罐及真空泵;分散罐设置为间隔的双层结构,在双层结构之间的空间内安装有电阻丝,且双层结构之间的空间内灌注有导热油;换热器与分散罐连接,接受罐与换热器连接,真空泵与接受罐连接。本发明解决了因为混合不均匀而烧结出的钛酸锂产品中含有杂相,且产品倍率充放电性能较差的问题。
一种动力锂电池动态充电方法涉及到一种实时充电方法,尤其涉及到动力锂电池的充电方法。其步骤为:设定初始的充电电流Ii,设定最高的阶段的充电电流If,设定好实时的充电电流随电压变化的函数I=f(V),使得函数满足Ii=f(Vi),If=f(Vf),I=f(V)本身满足设定的函数形式。在整个充电过程中,充电电源提供周期为T的恒定电流,初始阶段以Ii恒流充电T时间,然后采样得到电压V0,V0代入函数I=f(V),得I1。一下周期以I1恒流T时间,得电压V1,然后代入函数I=f(V),得I2。下一周期再以I2恒流充电T时间,如此循环迭代,直到充电结束。函数可以用多项式的形式(即泰勒展开)来表示,即I=a0+a1*(V-3)+a2*(V-3)2+a3*(V-3)3+......+an*(V-3)n+...的形式,用一个4或者5次多项式来近似。设定的充电函数应考虑不同电位下正负极材料处于的不同状态。
本发明提供一种碳硫复合材料,该复合材料包括原位负载少量Co、Fe、Ni、Cr、Mn和Zn中的一种或两种以上的金属和/或金属化合物的高孔隙率的多孔碳基体和硫颗粒,通过高孔隙率的分级多孔碳构筑出具有丰富界面的三维互联的电子传导路径和快速的离子扩散通道,硫颗粒部分填充在多孔碳基体的孔隙内,部分包覆于纳米碳颗粒表面,电子和锂离子在界面处与活性硫充分接触,提高硫的利用率和改善电极的机械稳定性,少量的金属和/或化合物均匀分散于纳米碳颗粒之间,对多硫化物进行有效化学吸附,同时促进多硫化锂向Li2S2/Li2S的电化学转化,提高碳硫复合材料的电化学性能。
本发明公开了一种氮掺杂碳包覆混合石墨复合材料及其制备方法和在锂离子电池中的应用。该复合材料具有核壳结构,内核为鳞片石墨和微晶石墨混合石墨,外壳为氮掺杂碳层。其制备方法为:将沥青与鳞片石墨和微晶石墨通过湿法球磨处理后,干燥,得到沥青包覆混合石墨;沥青包覆混合石墨与氮源混合均匀后,置于含氮气体气氛下进行热处理,即得具有丰富活性位点和良好结构稳定性的氮掺杂碳包覆混合石墨复合材料,将其作为锂离子电池负极材料表现出优异的电化学性能,不但具有高可逆比容量,还表现出更好的循环稳定性。该方法采用部分微晶石墨替代鳞片石墨为原料,原料成本降低,经济效益高,适合工业化应用。
本发明涉及一种低能耗制备磷酸铁锂的方法,利用可溶性铁盐与磷酸盐沉淀制备磷酸铁盐前驱体,在有机溶剂中与碘化锂均匀混合,然后进行焙烧,得到颗粒分布均匀的小粒径LiFePO4粉体。该方法具有反应温度低,能耗低、反应条件温和,工艺流程短等优点,适宜于低大规模化工业生产。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!