本发明提供了一种均匀表面包覆和表面具有尖晶石结构的富锂锰基正极材料及其制备方法,改性基体为富锂锰基正极材料xLi2MnO3•(1−x)LiMO2,包覆物质为一种磷酸盐。在对富锂锰基正极材料包覆过程中进行表面处理,通过后续的煅烧过程得到均匀表面包覆和表面具有尖晶石结构的富锂锰基正极材料。本发明对富锂锰基正极材料进行均匀表面包覆和表面处理,可以克服传统表面处理造成材料循环稳定性变差,和惰性物质包覆造成材料放电比容量损失和倍率性能差的缺点。本发明提供的富锂锰基正极材料的改性方法,使改性后的材料具有提高的首次库伦效率,倍率性能,循环稳定性和高温性能。
本发明涉及用于预测三元‑钛酸锂电池生命周期的方法。该方法先对进行了指定次数的循环后的某种型号规格的三元‑钛酸锂电池,进行电性能检测;然后拆解,获得正极材料、负极材料、隔膜和电解液中的一种或多种,并进行材料学检测和/或分析化学检测,建立关于三元‑钛酸锂电池电性能指标、材料学参数和/或分析化学参数与循环次数之间对应关系的标准数据库;再取待测三元‑钛酸锂电池同样进行拆解和相关检测,比对,预估电池的剩余的循环次数。本发明综合电性能测试、电池组分的材料学检测及分析化学检测等手段,提出一套相对准确的评价三元‑钛酸锂电池性能衰减程度并预测剩余使用寿命的方法,为三元‑钛酸锂电池的梯次利用提供更为准确的依据。
一种尖晶石型锂离子筛及其前躯体LiMn2O4的制备方法,将氢氧化锂和乙酸锰配成一定浓度的溶液,按锂锰摩尔比为0.5~0.75∶1的比例迅速混合并强烈搅拌,将所得到的褐色胶状物置于烘箱中,烘干蒸发脱去水分,使锂离子吸附在沉淀的表面,干燥后研磨,再在空气气氛下将研磨后的样品于恒温焙烧,得到锂离子筛前躯体LiMn2O4。通过本发明方法制备离子筛前躯体可以使反应物质均匀混合,缩短了反应所需进行的扩散路径,极大地增加了反应物质间的接触面积,降低了合成温度,缩短了反应时间,反应过程中有机物分解挥发,得到的产物相纯度高。制备离子筛反应过程简单、对设备要求低、易于控制,适于大规模工业化生产,离子筛对锂离子的吸附容量大,展现了很好的应用前景。
一种掺杂层状锂离子电池正极材料 LiMn0.5-x Ni0.5 - xMo2xO2及其制备方法,属于能源材料技术领域。 本发明将掺杂原料Ni、Mn、Mo以化学计量比混合均匀,溶于 水或乙醇中;加入柠檬酸溶液搅拌,加入化学计量锂盐溶液, 反应得到Li、Ni、Mn、Mo前驱体;在空气气氛中于300~600 ℃将得到前驱体的进行预分解;于700~1100℃高温煅烧预分 解产物,合成得到层状LiNi0.5- xMn0.5- xMo2xO2材料。本发明采用溶胶-凝胶法制备前 驱体,使各反应物能达到原子、分子级水平的混合程度,在空 气中焙烧前驱体不需要控制气氛,合成工艺简单,生产成本低, 采用本发明获得的层状锂离子电池正极材料,结构稳定,充放 电比容量高,循环稳定性好。
本实用新型公开了一种电动车锂电池外壳,包括把手、外壳、透气孔、电池仓、隔离板、散热管、散热仓和通气管,所述把手设于外壳顶部,所述透气孔均匀分布贯穿设于外壳两侧面上,所述电池仓设于外壳内,所述散热仓设于外壳内壁底面上,所述隔离板设于电池仓和散热仓之间,所述散热管贯穿设于隔离板内,所述通气管设于外壳内,所述通气管一端连接于散热仓内,所述通气管另一端连接于外壳侧面上。本实用新型属于锂电池外壳技术领域,具体是指一种可以通过疏水层减少雨水进入,同时散热仓加快锂电池散热的电动车锂电池外壳。
本发明公开了一种废旧磷酸铁锂电池正极材料的回收方法,包括如下步骤:将磷酸铁锂正极材料进行煅烧氧化,然后溶于稀硫酸中进行浸取,过滤,滤渣洗涤焙烧碾碎后得到氧化铁,滤液中加入氨水直至pH为2.5‑3,静置过滤,滤渣洗涤焙烧碾碎后得到磷酸铁,滤液中加入氨水直至pH为6.5‑7,静置过滤,滤液中加入磷酸,再加入氢氧化钠溶液直至pH为9‑9.5,静置过滤,滤渣洗涤烘干后得到磷酸锂。该回收方法的操作简便,周期短,难度低,效率高,可以除去正极材料中的粘结剂和碳化物,同时结合后续的酸浸碱浸全面回收正极材料中的各元素,提高了资源回收利用率,整个工艺流程绿色环保、安全可靠,对环境保护有着积极的意义。
本发明公开了一种单晶形貌锂离子电池正极材料的制备方法:(1)将金属盐溶液与氢氧化钠溶液加入反应釜中进行共沉淀反应,制备得到前驱体浆料;(2)将前驱体浆料与锂源、掺杂剂经湿法混合、喷雾干燥后,得到前驱体混合物;(3)将前驱体混合物进行第一次烧结,得到一次烧结产物;(4)将一次烧结产物进行水洗,水洗产物与包覆剂混合进行第二次烧结,得到单晶形貌锂离子电池正极材料。本发明制备方法中,采用了无氨工艺制备前驱体浆料,形成的是许多细小颗粒堆积的颗粒物,前驱体比表面非常大,大于100m2/g,这种超高比表面积的前驱体在烧结后更容易形成一次颗粒均匀分散的单晶正极材料,有利于容量的发挥。
本发明涉及一种二次功能化双涂层改性聚醚砜锂硫电池隔膜的制备方法。包括以下步骤:首先制得磺化聚醚砜,将磺化聚醚砜和高分子聚合物按比例混合后,熟化、搅拌,脱泡后得到纺丝前驱体溶液,然后进行纺丝得到纤维膜;将干燥后的纤维膜表面接枝二次单体并浸入改性多巴胺中得到二次功能化双涂层改性聚醚砜锂硫电池隔膜。所制备得到的二次功能化双涂层改性聚醚砜锂硫电池隔膜能够显著提高电池的容量保持率和倍率性能;具有高的吸液率和高安全性能;隔膜制备条件简单,工艺成本低。
本发明公开了一种削尖单晶高电压尖晶石镍锰酸锂正极材料的制备方法:(1)将锂源、镍源、锰源、掺杂物质、助熔剂和有机酸混合均匀;(2)将加热炉升温至80℃~300℃并保温,然后将步骤(1)获得的混合物料放入加热炉内使其在该温度下保温0.5~30h,形成低温共熔物;(3)将步骤(2)获得的低温共熔物置于放入预设温度300℃~700℃的加热炉中加热点燃,然后进行烧结,随炉自然冷却,得到削尖单晶高电压尖晶石镍锰酸锂正极材料。本发明的工艺简单、效率高、设备要求低,既能达到液相燃烧法的原料混合水平,又避免了液相燃烧法点燃过程的原料飞溅,且易实现大规模的生产。
本发明公开了一种六边形片状镍钴锰酸锂前驱体及其制备方法,一次颗粒为六边形片状结构,二次颗粒为片状六边形相互嵌插形式堆积而成的疏松颗粒。本发明所述的六边形片状高镍型镍钴锰酸锂前驱体从材料的微观形貌出发,通过添加晶面生长诱导剂来增加共沉淀反应的形核量,控制晶粒的长大速度,从而生成粒度分布均匀且集中的沉淀颗粒,使沉淀颗粒在某个/或某些晶面优先生长,形成具有正六边形片状结构的晶体颗粒且是穿插嵌入到前驱体的内部,避免成为点状、针状或平铺式的片状结构这种垂直嵌入式片状结构有利于烧结过程中锂离子的快速嵌入结构,能够有效地简化烧结流程,降低烧结温度,有利于烧结后成为均一的单晶正极材料。
聚合物锂电池封装装置,包括底座、调节板、调节装置、封装顶板,其中,所述底座上开有凹槽,调节板嵌入凹槽,并通过锁紧螺母与底座连接,同时在调节板与底座两侧设置有调节装置,所述封装顶板与凹槽平行且与调节板连接,另外在封装顶板上设置有卡扣。本实用新型采用调节板固在底座的凹槽中的固定方式,且通过调节装置调整调节板与底座的间距,进而调整聚合物锂电池电芯的厚度,实现封装区域厚度一致,采用耐高温硅胶板避免对极耳造成挤压,提高聚合物锂电池的质量。
本发明公开了一种废旧磷酸铁锂正极片的回收方法,包括以下步骤:S1、将拆解废旧磷酸铁锂电池得到的正极片进行机械粉碎,得到正极碎片;S2、将所述正极碎片与固体强碱混匀后,通过焙烧处理使固体强碱与铝反应生成偏铝酸盐,收集焙烧处理后得到的混合粉末;S3、将步骤S2得到的混合粉末与水混合,固液分离后,收集固相部分并从中回收锂、铁和/或磷元素。该方法操作简便且效果显著,能够较好地解决现有技术中碱浸法除铝存在的成本高、碱用量大及除铝不完全等问题。
本发明提出了一种中空型锂离子电池正极材料前驱体的制备方法,属于锂离子电池材料技术领域。本发明提出的一种中空型锂离子电池正极材料前驱体的制备方法,在合成前驱体的过程中,分两阶段进行合成反应。根据前驱体内部疏松部分的尺寸要求,确定第一阶段和第二阶段的切换点,并调整反应条件:第二阶段搅拌线速度高于第一阶段的搅拌线速度,第二阶段的总金属盐流量不大于第一阶段总金属盐流量;且合成过程中始终在反应釜中通入惰性气体。本方法工艺控制简单,在现有主流间断法工艺基础上,无新增成本,工艺适用范围广,不仅适用于含锰前驱体,也适用于镍钴铝等不含锰的前驱体,产品结晶性良好,杂质Na、S含量低,前驱体疏松部分的尺寸可调。
本发明公开了一种从废旧锂离子电池正极材料中回收有价金属的方法,该方法是将废旧锂离子电池进行放电、拆解,分选出正极极片;所述正极极片进行热解脱胶,分离出集流体和活性物质;所述活性物质与氯化盐混合,进行氯化焙烧;氯化焙烧固体产物进行水浸出,得到含有价金属离子的浸出液。该方法避免了传统废旧锂离子电池正极材料金属浸出回收过程中需消耗大量无机酸和碱的缺陷,且工艺简单、成本低廉、环境友好,具有极大的工业化应用价值。
本发明公开了一种生产高倍率球形锰酸锂的方法,所述方法包括如下步骤:步骤一,将水溶性锰盐加入到碱液中,混合,得到沉淀物,洗涤、干燥得到备用料;或;将水溶性掺杂金属盐M、水溶性锰盐加入到碱液中,混合,得到沉淀物,得到备用料;步骤二,配取锂源和步骤一所得备用料;通过砂磨处理;得到砂磨后的混合物;步骤三,将步骤二所得砂磨后的混合物与液体混合后制成浆料;步骤四,以步骤三所得浆料为原料;采用电喷技术制得球形前驱体粉末;步骤五在含氧条件下,对步骤四所得球形前驱体粉末进行热处理;得到高倍率球形锰酸锂。本发明工艺简单,所得产品品质可控、性能优良,便于大规模的工业化应用。
本发明提供一种锂基双钨钼酸盐红色荧光粉的制备方法。该红色荧光粉的化学组成式为:LiLn0.95Eu0.05(MO4)2。该方法是以锂源化合物、稀土金属硝酸盐和柠檬酸为原料,加去离子水溶解得到混合溶液A;将钨酸铵或钼酸铵和柠檬酸,加去离子水搅拌溶解,得溶液B;将A溶液加到B溶液中,制得新的混合溶液C;在搅拌条件下将乙二醇缓慢滴加到制得的混合溶液C中,滴加完成后调节pH,加热使混合溶液转变为溶胶;所得的溶胶经过烘干,得到干凝胶前驱体;再将所制备的干凝胶前驱体进行高温热处理,即得到锂基双钨钼酸盐红色荧光粉。本发明工艺简单,成本低,而且易于实现工业化,在发光领域具有广泛的应用前景。
本发明公开了一种锂电池破碎制备正负极废粉的方法,包括以下步骤:(1)将锂电池电芯在氮气保护下破碎,得到粗碎产品;(2)将粗碎产品进行一段加热,得到一段加热产物;所述一段加热的温度为60‑110℃;(3)将一段加热产物进行分选得到初级废料;(4)将初级废料制粉、二段加热得到二段加热产物;所述二段加热的温度为240‑310℃;(5)对二段加热产物进行选粉操作分离得到铜铝和初级正负极废粉。本发明还相应提供一种锂电池破碎制备正负极废粉的制备系统。本发明的方法与制备系统各步骤之间组合合理,达到提高废粉回收率的目的,同时也可以减少铜铝产品中废粉的含量,可以提高铜铝与废粉的分离效率。
本发明涉及一种废旧锂电池热解回收系统及其处理方法。该废旧锂电池热解回收系统包括进料布料机构、热解炉本体、出料机构、尾气处理机构、油气分离机构和回燃机构;热解炉本体包括炉管和燃烧室,炉管的一端与进料布料机构连接并穿过燃烧室,炉管的另一端与出料机构连接;炉管上开设有热解气出口,热解气出口位于燃烧室与出料机构之间,热解气出口与油气分离机构的进气口连接,油气分离机构的出气口与回燃机构的进气口以连接,回燃机构的出气口与燃烧室的进气口连接,燃烧室的出气口与尾气处理机构的进气口连接。实现了废旧锂电池的高效、节能、环保和高品质的综合回收处理。本发明还提出了上述系统的处理方法。
本发明公开了一种通过重结晶‑共沉淀法制备锂离子电池用正极材料的方法。该制备方法步骤如下:在一定温度下,按照一定比例将可溶性的过渡金属盐和锂盐溶于适量的蒸馏水中,配成一定浓度的金属盐溶液;再将金属盐溶液放置在一定温度下的高低温箱中一段时间;再将金属盐溶液进行抽滤、干燥;最后将样品进行高温烧结,即可得到锂离子电池用正极材料。该方法的制备工艺简单,生产设备少,成本低廉,适用于工业化大生产。
一种高容量动力型富镍锂离子电池正极材料及其制备方法,该高容量动力型富镍锂离子电池正极材料分子式为LiaNi1-x(MM’)xO2·M’’O,其中a=0.9-1.2,0≤x≤0.70,M为Co、Mn、Al中的至少一种;M’为Co、Al、V、Mn、Zr、Mg、Ti、Cr、Zr、La、Ce、Pr、Nd、Nb、Mo、Y、Sr、Ba、B、Sr、Sn、Ta中的至少一种;M’’O为包覆层,M’’为Co和Al。本发明还包括所述高容量动力型富镍锂离子电池正极材料的制备方法。本发明材料加工性能出色,使用本发明材料制备的电池,循环性能及高电压性能优异,使用安全稳定,既可满足便携式电子设备对电池的使用性能要求,又适于作动力型电池使用。
本发明公开了一种废旧锂电池正极活性材料的高效浸出工艺。其主要特点是先将废旧 锂离子电池拆分得到的正极活性材料用硫酸/双氧水混合溶液多段逆流浸出,剩余残渣用盐 酸浸出。本发明先采用硫酸和双氧水体系对正极活性材料浸出,盐酸对滤渣进行浸出,最 大程度减少了单独使用盐酸浸出时产生大量的Cl2而导致的工作环境恶劣且环境污染大,同 时也最大限度的提高了正极活性材料的浸出率。使用该方法可使废旧锂离子电池活性材料 的浸出率达到99%。
本发明涉及一种浸出废旧锂离子电池正极材料中金属的方法,包括:将废旧锂离子电池经过预处理得到正极活性物质,然后将所述正极活性物质与含有还原剂的铵盐溶液进行反应,反应后进行固液分离,得到浸出液和滤渣。本发明的方法,工艺简单,金属浸出率高,且金属选择性高,通过控制浸出过程中还原剂的种类和用量,可实现金属锰的选择性浸出,例如所述正极材料中包含Li、Co、Mn等金属时,所述还原剂为亚硫酸铵,浓度分别为0.75mol/L和1.5mol/L时,Mn的浸出率分别为90%和4%;浸出液中杂质含量低,后续除杂工序成本低,浸出过程在高压釜中进行,操作过程中无有毒气体排放,操作环境好。
本发明提供了一种从废旧锂离子电池中浸出有价金属同步脱氟的方法,具体为:将废旧锂离子电池进行预处理得到电极粉料,将电极粉料与水和浓硫酸混合均匀,进行熟化处理,控制熟化处理的温度为50~200℃,时间为1.0~24.0h,熟化完成后在熟化料中加入浸出剂进行浸出,浸出完成后进行过滤,得到低含氟量有价金属浸出液。该方法将电极粉中氟的脱除和有价金属的浸出有机结合起来,在电极粉酸浸前增加了熟化脱氟步骤,即电极粉首先加入部分浓硫酸进行熟化脱氟,脱氟后的电极粉再补加部分硫酸进行浸出,两者之间衔接紧密;与常规酸浸工艺相比,不增加酸耗,工艺成本低,可操作性强,得到的有价金属浸出液含氟量低,易于实现工业化生产。
本发明属于锂离子电池技术领域,特别涉及一种原位测试锂离子电池电势分布装置及其测试方法。所述装置包括正极机构、第一隔膜、参比机构、第二隔膜、负极机构和电解液。在负极、正极不同位置分别安装引线,同时在电池内部加入参比电极,在电池充放电过程中、或充放电停止时刻监测不同引线与参比电极之间的电压,可实时获取电池内部的电势分布。通过本发明提供的方法,可以快速测定电池内部的电势分布,为设计出内阻更小、电极利用率更高、循环性能更优的电池提供助力。
本发明涉及废旧电池回收领域,公开了一种处理废旧锂电池隔膜纸的方法,包括以下步骤:(1)将废旧隔膜纸进行剪切破碎,再进行气流分选,得到轻料和铜铝混合料;(2)将轻料投入浮选机内进行分选,得到隔膜纸和电池粉料;(3)将电池粉料制浆,再进行湿法浸出,将隔膜纸进行酸洗,再过滤,甩干,得到隔膜纸。本发明方法利用物理与化学相结合的方法处理隔膜纸,有效回收了废旧锂电池隔膜纸中的有价金属,满足了环境友好,低能耗,资源高回收的工业生产需求。
本发明公开了一种锂离子电池的主动均衡方法。实时采集锂离子电池组各电芯电压,在放电过程中当某一节电芯电压低于主动均衡下限电压时,通过DC/DC降压电路将整个电池组的能量变换后并联到需要均衡的电芯上,这样可以分担该电芯的一部分放电电流以减缓该电芯的电压下降速度,甚至可以对该电芯进行充电;在充电过程中当某一节电芯电压高于主动均衡上限电压时,将该节电芯的充电电流分流出来通过DC/DC升压电路变换后对整个电池组进行充电以减缓该电芯的电压上升速度,甚至可以对该电芯进行放电;通过上述方法可以很好的实现对电池组进行主动均衡,均衡电流可以做到几十安培,可以很好的确保电池组的荷电状态(SOC)和电池健康度(SOH),大大的提高电池组的使用寿命。
本发明提供了一种锂离子电池P2D模型的参数估计方法,该方法先建立锂离子电池的P2D模型,确定待估参数的类型,再根据步骤确定的待估参数类型,选取候选参数,代入步骤建立的P2D模型进行计算,得到相应的输出误差值,然后初始化候选解数据库,将候选参数和相应的输出误差值存放于候选解数据库,作为代理模型的初始训练数据,之后使用初始训练数据构建代理模型,再通过拉丁超立方抽样方法在解空间中生成候选解的种群,使用代理模型持续对候选解进行评价,同时使用TLBO算法根据预测误差来推动候选解种群的进化,选出更加优秀的子代,交由P2D模型进行精确计算评价。本发明所提供的参数估计方法,能够有效、准确地识别模型参数,优化效率显著提升。
本发明提供了一种锂离子电池用复合纳米材料及其制备方法,以多壁碳纳米管为原料,制成二氧化硅/二氧化锡/多壁碳纳米管复合纳米材料,然后进一步碳化硅包覆,所得复合纳米材料可用于锂离子电池负极材料,具有首次库伦效率高、容量高和循环稳定性高等优点。
本发明公开了一种八面体多孔二氧化钼的制备方法及其在锂离子电池中的应用,该制备方法是将均苯三甲酸和四甲基氢氧化铵加入到含铜盐及磷钼酸和/或磷钼酸盐的溶液中搅拌,形成乳液;所述乳液转入水热反应釜中进行水热反应,得到前驱体化合物;所述前驱体化合物置于保护气氛中,在高温下热处理后,洗涤,即得由超细纳米颗粒堆积组装而成、形貌均匀、稳定性好,且具有多孔特性的多孔八面体二氧化钼材料,该二氧化钼材料作为负极材料用于锂离子电池,在保证比容量的前提下,改善了电极材料的倍率性能和循环稳定性能;且二氧化钼材料的制备工艺简单,成本低廉,具有较好的研究前景。
本发明涉及一种锂离子电池用复合纳米金属负极材料及其制备方法,其特征为:材料表观为固体粉末,粒径为2~25μm;其结构为纳米金属或合金颗粒分散分布在具有介孔结构的无定型碳中;材料含碳量0.5~50%,锡基金属含量50~99.5%;其制备方法是金属氧化物分散于有机聚合物树脂中、有机聚合物树脂碳化和金属氧化物的热还原:解决了金属或合金作为负极材料的在循环过程中的粉化问题;解决了纳米活性材料的循环过程中的聚集问题;改善了金属或合金作为负极材料的电化学循环性能,使其实用于电池的生产。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!