一种镍钴酸锂电池再生三元正极材料的制备方法。本发明包括以下步骤:(1)废旧锂离子电池采用氯化钠溶液进行放电,拆解,将正极片在碱液中进行浸泡,过滤得到黑色粉末;(2)将所得的黑色粉末在保护气气氛下进行还原焙烧;(3)将黑色粉溶解于酸性溶液中,萃取除杂,得到较高纯度的含镍和钴的混合溶液。(4)测得钴和镍离子的浓度后,向溶液中加入相应的锰源与钨源,调节pH,进行共沉淀反应,得到前驱体;(5)将前驱体与锂源与硼源混合烧结得到正极材料。根据本发明提供的方法,不仅有效地减轻废旧锂离子电池所产生的污染,且能将其中废旧镍钴酸锂材料回收再生为三元正极材料,该正极材料具有优异的电化学性能。
一种锂离子电池用多晶高镍正极材料,包括层状结构的基材和基材外尖晶石结构的包覆层,基材的通式为LiaNi1?x?yCoxMyO2,其中,M为Mn和Al中的至少一种,包覆层为锂锰氧化物,且基材表面总杂质锂占基材总重的质量分数在0.085%以下。该正极材料的制备包括以下步骤:称取Ni1?x?yCoxMy(OH)2和锂源混合,然后经热处理,冷却,破碎,筛分,得到基材;测定基材表面残存的杂质Li2CO3和LiOH含量,根据测定结果加入金属Mn化合物中,在有氧气氛中经低温热处理,得到锂离子电池用多晶高镍正极材料。本发明的产品具有材料碱度低、气胀程度小、加工性能和循环性能优异等优点。
本发明涉及一种锂离子电池正极材料LiCo1/3Fe2/3PO4/C的制备方法;属于锂离子电池技术领域。所述制备方法为:按摩尔比Co:Fe=1 : 2配取钴盐、铁盐加水后加热至80℃~90℃并调整pH值至10~11,反应得到CoFe2O4前驱体;再将所得CoFe2O4前驱体与锂盐、磷盐混合,加入碳源,球磨、烧结,得到LiCo1/3Fe2/3PO4/C复合材料。本发明合成的LiCo1/3Fe2/3PO4固溶体中的Co、Fe元素分布极其均匀,作为正极材料使用时能够兼具磷酸铁锂材料的高容量、长循环寿命和磷酸钴锂的高电压、高能量密度的优势。其在动力电池领域具有很好的应用前景。
本发明公开了一种锂铍混合精矿浮选分离工艺,对锂铍混合浮选精矿,先按FeCl3、Na2S、Na2CO3、NaOH的顺序依次加入调整剂,在矿浆质量浓度为10%~25%,矿浆温度为18℃~25℃条件下调浆,再加入组合捕收剂,进行分离粗选,得到绿柱石粗精矿和合格锂辉石精矿,绿柱石粗精矿中依次加入FeCl3、Na2S、Na2CO3,在矿浆质量浓度为10%~15%,矿浆温度为18℃~25℃条件下调浆,再加组合捕收剂进行分离精选,即得到合格的绿柱石精矿产品,其中锂精矿Li2O品位5.0%~6.7%,铍精矿BeO品位6.0%~7.5%。本发明具有工艺流程简单,生产成本低,操作易于控制的优点,能有效解决锂辉石与绿柱石难以分离的工业难题。
本发明公开了一种改进长短期记忆神经网络的锂电池健康状态估计方法。其步骤为:获取锂电池实验数据集;根据容量计算电池实际的健康状态,提取若干个能够表征电池健康状态的老化特征并对特征数据进行标准化处理;初始化相关参数并建立改进的长短期记忆神经网络模型,确定网络中需要优化的参数;对改进的长短期记忆神经网络估计模型进行训练;将训练得到的最优参数值作为长短期记忆神经网络模型中对应的值来进行锂离子电池健康状态的估计。本发明能够有效提高锂离子电池健康状态的估计精度。
本发明提供了一种凝胶态电解质、制备方法及锂离子电池的制备方法,将硼酸或硼酸酯与有机硅化合物反应制备得到硼硅烷交联化合物,之后于具有保护气氛且水含量和氧含量均小于1ppm的环境下,将由硼硅烷交联化合物、单体聚合物单体、锂盐、改性剂和引发剂混合而成的预聚合物溶液,再将预聚合溶液、支撑隔膜、正极极片和负极极片组装成锂电池封装后,原位聚合一段时间,得到凝胶态电解质,并在原位聚合制备电解质的同时,也制得具有这种电解质的锂电池。本发明的凝胶态聚合物电解质在具有较佳的重构塑形特点外,可进一步提升电解质的电导率和界面性能,改善电池的电化学性能。
本申请涉及锂离子电池领域,涉及一种硅氧复合材料及其制备方法以及锂离子电池。在酸改性氧化亚硅表面原位聚合,形成聚合物包裹氧化亚硅的核壳结构。通过在氧化亚硅表面原位聚合,能够在氧化亚硅表面枝接原位反应位点,形成内核与外壳结合的牢固连接结构,碳化后形成的碳结构稳定,结合牢固,能够有效地提高复合材料的电导率。而且由于形成了聚合物包裹氧化亚硅的核壳结构,使得氧化亚硅材料具有弹性保护层,解决了氧化亚硅负极体积膨胀的问题。采用有机锂对核壳结构进行预锂化提高了材料的首次效率。
本发明属于锂离子电池领域,具体涉及一种适用于锂离子电池负极的硼酸钴/石墨烯复合材料及制备方法。该复合材料为纳米棒结构硼酸钴镶嵌在褶皱的石墨烯内部,硼酸钴所占的质量百分数为10%~95%。首先将水溶性钴盐以及十水四硼酸钠溶于去离子水,之后加入氧化石墨烯溶液,在水热反应条件下控制温度和反应时长,氧化石墨烯采用化学方法合成;最后将所获得的沉淀离心洗涤干燥,获得锂离子电池负极用的硼酸钴/石墨烯复合材料。本发明的复合材料用作锂离子电池负极时,具有比容量高、循环性能好、倍率性能优良及循环寿命长等优点;其制备方法简单、成本低廉,易于实现工业规模化生产。
本发明涉及一种锂离子电池LiMnPO4正极炭包覆的制备方法。所采用的技术方案为:以煤沥青中的喹啉可溶物为炭源,利用煤沥青的喹啉可溶物混合液与LiMnPO4正极前驱体形成稳定胶体,实现对LiMnPO4前驱体的均匀球形包覆,然后经有机溶剂分离、二次炭化工艺制备炭包覆的锂离子电池LiMnPO4正极材料,其中一次炭化采用易溶性无机固体粉末与前驱体共混炭化方法制备锂离子电池LiMnPO4正极炭包覆材料。本发明的优势在于能够制备出一种电导率高、离子扩散系数大、均质、球形层状结构包覆炭的锂离子电池LiMnPO4正极材料。
本发明提供一种水泥窑协同处置废弃锂离子电池的系统和方法,其根据废弃锂离子电池中所含物质的特性并针对现有技术中存在的难题提出。其中处置系统包括:废弃锂离子电池储存装置,无水无氧双轴破碎机,立式热解炉,中和塔,有价元素提炼系统和水泥窑系统;处置方法具体为:通过对废弃锂离子电池的分类预处理、无水无氧破碎解体、立式热解炉蒸发分解烧结成固态混合渣、从固态混合渣中提取有价元素;再通过采用廉价的碱性水泥原料中和含氟、含磷化合物气体、水泥窑高温焚烧可燃废气并处理所有废渣,实现清洁生产和环境保护。本发明系统设备结构简单,能实现整个系统内资源和能源的最大化利用,且能实现采用简单方法低成本回收有价元素物质。
本发明公开了一种富锂锰基正极材料的改性方法,由以下步骤组成:准备富锂锰基正极材料的前驱体,将前驱体、碳酸锂和掺杂改性金属氟盐充分混合均匀,将混合均匀后的混合料进行高温烧结,得到改性后的富锂锰基正极材料。本发明的改性过程简单、易控,不增加现有制备工艺步骤且产品电化学性能优异。
一种高容量球形镍钴铝酸锂正极材料(NCA)的制备方法包括先在常温下将含有镍、钴、铝、锂等元素的化合物在分散剂中进行湿混,然后干燥,得到混合均匀的原料混料;再将干燥后得到原料混料在5~600r/min的回旋转动炉膛中的氧化气氛中进行分段烧结并保温一定的时间,然后快速降温,得到高容量的球形镍钴铝酸锂正极材料。本发明的整个制备过程中各种原料都在湿混和转动混合的动态过程中进行,充分的促进了各种原料之间的均匀混合,解决了固相法制备镍钴铝酸锂正极材料过程中的成分偏析问题。
本发明公开了一种动力锂离子电池Fe/FeO复合负极材料及其制备方法,该方法包括以下步骤:将柠檬酸铁粉末加入到溶有有机物热解炭前驱体的溶液中,使其中柠檬酸铁与有机物热解炭的原子比为20∶1~4∶1,所述的有机物热解炭前驱体为酚醛树脂、环氧树脂、沥青或蔗糖。搅拌混合成均匀浆体后,置入烘箱内升温至40~180℃保温固化,冷却后磨粉。将所得固体粉末在惰性气氛条件下以600~900℃的温度进行恒温热处理,冷却后研磨、过筛,得到动力锂离子电池Fe/FeO复合负极材料。该材料比容量高、导电性能好、循环寿命长、快速充放电性能优良,且制作方法简单、成本低,对环境污染小,具有良好的产业化前景。
本发明公开了一种改性尖晶石锰酸锂材料、制备方法及包括其的电池用正极材料。其中,改性尖晶石锰酸锂材料中掺杂有钒元素,Li∶Mn∶V的摩尔比为0.96~1.12∶1.80~2∶0.001~0.05。本发明提供的改性尖晶石锰酸锂材料,结构稳定、形貌规整、加工性能优异并具有良好的电化学性能;本发明提供的改性尖晶石锰酸锂材料的制备方法,所采用的高温固相合成法,成本低廉、流程简单、参数控制范围宽泛,适合于大规模工业化生产。
本发明公开了一种基于遗传算法的锂离子电池参数拟合方法,包括如下步骤:对锂离子电池进行建模;对锂离子电池进行HPPC测试;利用遗传算法设计目标函数,并通过设置起始点和终止点的权重因子以在初始阶段和稳定阶段获得良好的拟合效果;采用基于遗传算法的参数拟合方法对实验数据进行拟合;根据所得拟合曲线对锂离子电池进行参数辨识。本发明通过遗传算法来拟合HPPC实验数据,进而得到电池的各项参数,解决了基于非线性最小二乘法的电池参数拟合法存在的拟合结果不准确、拟合效果不稳定等缺点,使得数据点和拟合曲线在初始阶段、稳定阶段都具有良好的重合度,提高了参数拟合的准确度、稳定性,以最大限度减小了误差,具有良好的通用性。
一种综合回收废旧锂离子电池黑粉中有价金属的方法:将废旧锂离子电池黑粉在惰性气氛中进行高温还原,然后通入氯化氢气体进行选择性氢氯化反应,得到固体产物和挥发性氯化盐烟尘;挥发性氯化盐烟尘进行水浸,得到滤液和固体残渣,固体产物进行水浸,固液分离,得到水浸液和水浸渣;水浸渣进行磁选分离,得到磁性镍钴合金和非磁性混合物,非磁性混合物用NaOH溶液浸出,得到铝浸出液和高纯再生石墨;滤液和水浸液合并,调节pH至9~12,固液分离,得到氢氧化锰固体和含锂离子的滤液,含锂离子的滤液中加入饱和Na2CO3溶液,固液分离,热水洗涤滤渣,得到高纯Li2CO3。本发明整个回收过程流程简单,有价金属的损失少,回收效率高。
本发明公开了一种从磷酸铁锂电池废极粉中分离微细粒铜的方法,涉及固体废弃物回收处理技术领域。该方法主要包括以下步骤:将磷酸铁锂电池废极粉以一定的磨矿浓度通过棒磨磨细,再所得浆料中加入适量浓度的分散剂使微细粒的磷酸铁锂、石墨、铜等充分分散和悬浮,然后将浆料以一定的浓度输送至超重力分选设备中,并通过调控分选机的重力加速度和反冲水压,最终将微细粒铜从废极粉中分离并富集得到铜颗粒精矿。本分选工艺具有流程短、设备简单、分离效果好、锂损失量少、试剂成本低、环境污染少、经济效益高的优势。
本发明公开了一种新型锂硫电池三层复合隔膜的制备方法,包括以下步骤:将高分子聚合物,能溶解聚合物的溶剂混合后,熟化、搅拌,脱泡,得到均匀无泡铸膜液。将所得均匀无泡铸膜液浇注到商用锂离子电池隔膜表面,用刮刀刮制成湿膜,所得湿膜在空气中预蒸发后浸入混合凝固浴中,在混合凝固浴中交换后得到初成型隔膜,然后将所得到的初成型隔膜浸入非溶剂中交换,取出,晾干,得到两层复合隔膜。将表面修饰的纳米Si3N4颗粒、粘结剂、NMP在研钵中研磨,得到充分研磨的混合物。将所得充分研磨的混合物用刮刀刮涂在上述两层复合隔膜表面,得到三层复合隔膜。 1
本发明公开了一种无人机快速充电的锂电池管理系统,包括主控制器、模拟前端、均衡控制单元和多路均衡模块,各所述均衡模块与各单个锂电池一一对应连接,所述均衡模拟包括驱动控制单元和双向DC/DC隔离单元;所述模拟前端与所述主控制器相连,用于采集各锂电池的状态信息并发送至主控制器以进行是否均衡的判断;所述均衡控制单元与所述主控制器相连,用于接收主控制器的均衡指令,并控制对应锂电池的驱动控制单元,驱动控制单元驱动双向DC/DC隔离单元,调整均衡电流和电压,实现电压高的单个锂电池向锂电池包升压放电或者锂电池包向单个锂电池放电。本发明的管理系统具有可同时多锂电池进行均衡、均衡电流大、均衡速度快、结构简单、控制简便等优点。
本发明公开了一种表面双层包覆的锂离子电池三元材料,包括镍钴锰三元材料,在所述镍钴锰三元材料的表面包覆有富锂层状氧化物包覆层,并且在所述富锂层状氧化物包覆层的表面包覆有氟化铝包覆层,该表面双层包覆的锂离子电池三元材料包覆层不易脱落,化学稳定性好,容量高。本发明还公开了一种该锂离子电池三元材料的制备方法,先采用有机络合剂‑辅助溶胶凝胶法在三元材料的表面包覆富锂层状氧化物,形成富锂包覆层,再用液相法在富锂层状氧化物表面包覆氟化铝,得到双层包覆的锂离子电池三元材料,该制备方法工艺简单,操作可行性高,元素利用率高。
本发明提高了一种表面包覆氮化钛与石墨烯的磷酸铁锂复合正极材料及其制备方法和在锂离子电池制备中的应用,该磷酸铁锂复合正极材料是以磷酸铁锂材料为内核,在磷酸铁锂材料表面包覆有一层主要由氮化钛与石墨烯组成的导电网络膜;该导电网络膜的质量为磷酸铁锂材料质量的0.2%~10%。制备上述材料时,先将磷酸铁锂材料与石墨烯、氮源和含钛化合物在分散介质中混合均匀,制得的混合料烘干,然后在惰性保护性气氛下,于400℃~900℃温度下烧结6h~24h,得到表面包覆氮化钛与石墨烯的磷酸铁锂复合正极材料。本发明的磷酸铁锂复合正极材料导电率和振实密度更高、倍率性能和循环性能更好,制备方法步骤简单、成本低、操作简便。
本实用新型公开了一种锂离子电池的冷压装置,包括底座、调节组件以及冷压组件,所述底座内壁底部的两侧均固定连接有支撑座,两个所述支撑座的顶部之间固定连接有冷压室,所述冷压室的内部固定连接有分割板,所述冷压室的两侧均滑动连接有拉杆,两个所述拉杆的相对一侧均固定连接有固定板,所述冷压室内壁的两侧对称固定连接有固定弹簧。本实用新型通过固定板对锂离子电池进行固定且以适应不同大小的锂离子电池,通过电机带动凸轮转动从而对锂离子电池进行冷压,工作效率高,通过指针使装置可以根据不同规格的锂离子电池来精准确定不同的规格厚度,实用性强,通过启动电动伸缩杆带动升降板上升使其从下方顶出锂离子电池,方便操作人员取下电池。
本发明提供了一种集合变分自编码器与动态规整的锂电池异常检测方法,包括获取锂电池生产过程中正常和异常的电池恒流充电电压时序数据;对数据进行预处理;将预处理后的数据划分为模型训练集、阈值训练集和测试集;将模型训练集输入至构建的VAE‑LSTM‑DTW模型中进行训练;所述VAE‑LSTM‑DTW模型包括经LSTM改进后的VAE网络构成的重构模型和DTW评价模型;将测试集输入至训练好的VAE‑LSTM‑DTW模型中,先经过重构模型得到测试集对应的理论正常重构数据集,后将测试集数据与对应的理论正常重构数据输入DTW评价模型,得到两者之间的重构误差,将重构误差与最优阈值进行比较,得到锂电池异常检测结果。
本发明提供了一种表面包覆碳的纳米磷酸亚铁锂/碳复合材料的制备方法,将铁粉用磷酸溶解,将有机物单体溶解于水中,随后将上述所得两种溶液混合,缓慢加入氧化剂反应。再经滤、洗涤、干燥后得到聚合物包覆的纳米磷酸铁前驱体;将得到的聚合物包覆的纳米磷酸铁前驱体与锂源均匀球磨混合后在混合气氛中以一定的热处理温度处理一定的时间,获得纳米磷酸亚铁锂/碳复合材料。本发明合成工艺简单,通过一步氧化法获取聚合物包覆的纳米磷酸铁前驱体,工艺条件易于控制,铁源成本低廉,磷酸可循环使用,无需额外碳源,生产成本低。
本发明属于电池建模技术领域,公开了叠片型锂离子电池的三维电化学‑热全耦合模型及其构建方法。所述构建方法包括以下步骤:获取电池的电化学参数、热参数以及电池的设计参数;根据电池设计参数真实还原电芯的叠片结构,构建三维几何模型;通过锂离子电池物理场搭建电化学模型、通过固体/流体传热物理场搭建热模型,将所述的电化学参数、热参数赋值于电化学模型和热模型;耦合电化学模型和热模型,构建三维电化学‑热全耦合模型;划分网格,计算得到结果。本发明构建的电化学‑热全三维耦合模型,可以用于预测电池温度、锂离子浓度、电势、产热功率等,具有较高的准确度。
一种快充型无钴高镍浓度梯度核壳结构锂离子电池三元正极材料及其制备方法。本发明的正极材料化学式为Li[NixMn1‑x‑yWy]O2@mLi2ZrO3,其中x、y为摩尔数,0.8≤x<1,0<y≤0.05,m为质量分数,0<m≤3000ppm。本发明的制备方法为:将一定化学计量比的含镍、锰、钨的第一盐溶液及氢氧化钠溶液、氨水溶液加入反应釜内反应形成前驱体内核;再将不同化学计量比的含镍、锰、钨的第二盐溶液加入反应釜,充分反应后进行离心洗涤、烘干、筛分除铁,得到化学式为[NixMn1‑x‑yWy](OH)2的球形前驱体;将前驱体粉末通过高能混合器与锆源及锂源充分混合后焙烧,最后得到一种快充型无钴高镍浓度梯度核壳结构锂离子电池三元正极材料。本发明的正极材料具有较好的晶体结构,以其作为正极材料所制得的电池具有优异的电化学性能;本发明制备方法简单可控、成本低廉,具有商业应用价值。
一种无钴高镍三元浓度梯度核壳结构锂离子电池正极材料及其制备方法。本发明的正极材料的化学式为Li[NixMn1‑x‑yWy]O2,其中x、y为摩尔数,0.8≤x<1,0<y≤0.1。本发明的制备方法为:将含镍、锰、钨的第一盐溶液及氢氧化钠溶液、氨水溶液加入反应釜中反应形成前驱体内核,再将不同比例的含镍、锰、钨的第二盐溶液加入反应釜,充分反应后进行离心洗涤、烘干、筛分除铁后与氢氧化锂混合焙烧,得到三元浓度梯度核壳结构锂离子电池正极材料。本发明的浓度梯度正极材料具有较好的晶体结构、较高的振实密度,以其作为正极材料制得的电池具有优异的电化学性能;本发明制备方法简单可控、成本低廉,适合工业化生产。
本发明涉及一种双金属二维金属有机框架结构(MOF)串联催化剂的制备方法及其在锂硫电池中对硫还原过程的分区串联催化,属于新能源材料的开发与研究技术领域,将不同金属位点的盐和有机配体经超声法或微波法制备MOF。在MOF合成过程中加入少量的导电碳,并载硫后涂在集流体上作为电池的工作电极,以金属锂片为对电极和参比电极,以聚丙烯膜为隔膜,以有机溶液为电解液,在充满高纯氩气的手套箱中组装成扣式电池。与现有技术相比,本发明可作为硫电化学还原过程中的分区串联催化剂,广泛应用于锂硫电池等能源领域,具有优异的充/放电性能。
本发明公开了一种新型锂硫电池功能隔膜的制备方法,包括以下步骤:将聚偏氟乙烯、导锂添加剂、造孔添加剂、能溶解聚合物的溶剂按质量比例混合、熟化、搅拌、静置脱泡后得到铸膜液;将铸膜液刮制成膜,放入混合凝固浴,然后浸泡在去离子水中形成初成膜;初成膜置于无水乙醇中浸泡,取出,放入正丁醇中浸泡,在空气中晾干;在相转化催化剂的作用下碱处理;所得膜进一步进行苯乙烯接枝,最终在浓硫酸溶液中进行磺化,得到含有磺酸基团的隔膜。本发明通过接枝磺酸基团制备锂硫电池隔膜,制备的隔膜能够显著提高电池的容量保持率和库伦效率;所得功能隔膜其表面与孔道内部均含有的大量磺酸根基团能够有效阻止飞梭效应,且具有良好的抗污染能力。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!