本发明公开了一种废旧锂电池正极材料电解剥离处理方法,具体是通过低电流密度或者高电流密度电解剥离出锂电池正极材料中的铝箔,同时获得正极活性物质锂钴浸出液;所述的电解是指在硫酸溶液中以含铝箔的废旧锂电池正极材料为阴极,铂电极为阳极;所述的电解在低电流密度下进行时,正极粉溶于电解液,溶解完时剥离得到铝箔,同时得到含锂钴的浸出液,或在高电流密度下电离时,得到剥离正极粉的铝箔,同时收集正极粉,并将正极粉溶解在电解液中得到含锂钴的浸出液;所述的低电流密度为100~500A/m2,高电流密度为600~1000A/m2。此工艺过程简单,酸浓度低,浸出时间短,处理成本低。
本实用新型提供了一种用于锂电池材料制备的辅材预混合装置,用于对进入锂电池材料混合装置前的各辅材进行预混合,预混合装置的壳体包括倒锥段和圆柱段,所述圆柱段的内径与倒锥段中小直径端的内径相同,所述圆柱段一端与倒锥段的小直径端固定连接,另一端设有与锂电池材料混合装置连通的出料口,倒锥段中大直径端的端面上设有允许辅材进入的进料口,所述壳体内设有多组打散混合组件。本实用新型的用于锂电池材料制备的辅材预混合装置具有结构简单、缩短锂电池材料制备时间、提高辅材混合均匀程度和保证锂电池电性能等优点。
本发明公开了一种锂电池储能电站倍率控制方法、系统及存储介质,应用于基于锂离子电池储能单元短时高过载能力特性的倍率,设置储能变流器冗余配置的情况下,控制过程包括:获取要求输入输出功率、要求持续时间、锂离子电池储能电站额定功率、锂离子电池储能单元额定功率、满足要求输入输出功率下的预期可持续时间、锂离子电池储能单元的倍率;基于获取的数据,控制锂离子电池储能电站在高倍率过载模式、常规过载模式、智能运行模式三种模式下切换运行。通过提高储能变流器冗余配置,在少量增加储能电站成本的情况下,增大了锂离子电池储能电站的倍率充放电能力;降低了主动支撑时单位千瓦整体成本,更好的利用储能电站灵活性调节能力。
本发明提供了一种退役锂离子电池负极石墨的回收再生方法,目的是解决退役负极石墨经济附加值低、再利用困难的问题。具体步骤如下:(1)将退役锂离子电池放电至2.5V,拆解,获得新鲜的负极极片,再将新鲜的负极极片展开、平铺并烘干,然后进行敲击使退役石墨与铜箔分离,回收退役石墨;(2)将退役石墨直接焙烧,利用升温速率将退役石墨中的有机组份转化成无定型炭,然后根据锂原子在不同温度下的迁移特性,实现退役石墨的预锂化,获得预锂石墨;(3)将预锂石墨与有机混合碳源混合均匀,在回转炉中焙烧,获得再生石墨负极材料。本发明获得的退役石墨无需进行除铜、纯度高,具有优异的电化学性能,可直接再应用于锂离子电池中。
本发明公开了一种电池级碳酸锂的多级浆洗提纯方法,属于化工材料制备技术领域,该方法包括:采用2~3道浆化洗涤工序,浆洗温度控制均在88~92℃;浆化洗涤工序之间进行浆洗压滤,压滤液返回利用;浆化洗涤完成后,进行离心分离,得到碳酸锂滤饼,离心滤液返回浆化洗涤作为浆洗液,离心过程采用RO水对碳酸锂滤饼进行淋洗,淋洗液返回浆化洗涤作为浆洗液;对淋洗后的碳酸锂滤饼进行干燥、除磁、粉碎处理,即得电池级碳酸锂。本发明电池级碳酸锂的多级浆洗提纯方法,可以实现电池级碳酸锂中的杂质离子进一步脱除,降低蒸汽消耗,提高产品的质量和市场竞争力,增加企业效益。
本发明属于湿法冶金技术领域,公开了一种高纯度锂盐的制备方法。本发明制备方法,其特征在于包括以下步骤:(1)将粗制碳酸锂加水制成浆料,升温;(2)向步骤(1)的浆料中加入浸提剂,反应;(3)将反应后体系过滤,滤液调节pH值至6.0‑8.0;(4)将调节后滤液蒸发结晶,过滤,烘干,得到高纯度锂盐。采用本发明的方法制备得到的锂盐产品中,氯化锂主含量达到99.8wt%以上,硫酸锂主含量达到99.9wt%以上,硝酸锂主含量达到99.7wt%以上,远高于电池级99.5wt%的标准。本发明工艺简单,流程短,设备要求低,具有很好的工业化可行性,能耗成本低廉,产品价值高,具有可观的经济效益。
本发明公开了一种基于功能性聚合物的复合电解质膜,其主要由聚合物多孔隔膜、涂布在聚合物多孔隔膜一侧的全氟磺酰胺锂型单锂离子型聚合物电解质涂层和涂布在聚合物多孔隔膜另一侧的对锂负极具有稳定性和具有自由基捕捉功能的凝胶聚合物涂层组成;其制备方法包括:将全氟磺酰氟树脂与含有双吸电子基团的甲基锂反应,得到全氟磺酰胺锂聚合物;洗涤后溶解,将其涂布在准备的聚合物多孔隔膜的一侧,加入非溶剂二次成膜,再将对锂负极具有良好稳定性的含添加剂的凝胶聚合物体系,包括聚合物、溶剂、自由基湮灭效应添加剂及纳米填料的混合液涂布在复合膜的另一侧,干燥后制备得到复合电解质膜。本发明的复合电解质膜可提升锂硫二次电池的循环稳定性。
一种降低锰酸锂电池储存后容量衰减的正极材料,由下述组份组成:锰酸锂、Li2CO3、LiF或LiOH、纳米碳纤维;本发明具有组分简单合理、生产成本低、可有效提高锰酸锂电池的循环性能,提高锰酸锂电池储存后的容量恢复率,提高锰酸锂电池的能量密度和克容量;可实现工业化大生产,可与各种型号的锂电池配套,替代现有锰酸锂电池正极。
本发明公开了一种铌酸锂薄膜刻蚀方法,一种铌酸锂薄膜刻蚀方法,一种铌酸锂薄膜刻蚀方法,包括硅衬底层、二氧化硅下包层、铌酸锂芯层、第一铬金属阻挡层;针对现有的干法刻蚀重新对氟基气体和氩离子刻蚀环节进行优化,以氟基气体为主的化学物理作用侧重于提高刻蚀效率和增加刻蚀深度,以氩离子为主的物理作用侧重于去除前一种刻蚀方法中生成的氟化锂固体沉积物,两者相互结合以实现铌酸锂薄膜的高效和高质量刻蚀。尤其是对于大膜厚的铌酸锂薄膜,在上述刻蚀方法的作用下,也可以起到明显的作用和效果。因此本发明的刻蚀方法适用于所有膜厚的铌酸锂薄膜,具有工艺方案改造成本低、兼容性高、可靠性好及实施便捷等优点。
本发明提供了一种高电压尖晶石锰酸锂正极材料及其制备方法。本发明的制备方法采用湿法制备的尖晶石型镍铝共掺杂的四氧化三锰作为重要原料,包括以下步骤:(1)将锂源和镍铝共掺杂四氧化三锰混合均匀,得到混合物料;(2)将混合物料进行烧结处理,得到镍锰酸锂正极材料。本发明的制备方法流程简单、无须添加有机溶剂;由本发明的方法制备得到的高电压尖晶石镍锰酸锂正极材料产品的D50为8.932~9.466μm,比表面积为2.185~2.434m2/g,其组分颗粒均为单晶,锰元素、镍元素和铝元素分布均匀,大小组分颗粒均为单晶,从而结构稳定,具有高放电容量、良好的倍率性能和优异的循环性能。
本发明涉及一种锂离子电池隔膜及其制备方法。本发明提供的锂离子电池隔膜分为三层,其中芯层为棉纤维薄膜层,上下表层为聚丙烯纤维薄膜层。其中隔膜芯层由棉纤维经打浆后再配以抗氧化剂、阻燃剂等采用湿法抄造工艺经抄造成膜;表层由聚丙烯纤维经亲水性改性后再配以粘接剂采用湿法抄造工艺经抄造成膜;然后以棉纤维膜为芯层,聚丙烯纤维膜为上下表层在110℃~150℃条件下以双热压辊热压而成锂离子电池隔膜。锂离子电池隔膜的孔隙率为40%~80%,孔径为0.01微米~0.2微米;纵横向拉伸强度基本一致,为120~300Mpa;穿刺强度>20kg·mm-1;90℃下收缩率<1%;厚度为20微米~60微米。该隔膜具有孔隙分布均匀,机械强度高,收缩率低,热稳定性高,亲/保液性能良好,且制备简单,无污染,适合工业化生产。
本发明一种高稳定性三维多孔锂金属阳极及其制备方法和应用,包括平板金属集流体、复合在平板金属集流体表面的活性层;所述的活性层包括胶黏剂以及分散胶黏剂中的Ni2P纳米粒子和含磷官能团共掺杂的介孔碳,所述的介孔碳为具有内部连通孔结构的多孔碳骨架,连通孔形成的装填腔室内填充有金属锂。本发明的三维多孔锂金属阳极具有良好的导电性、丰富的腔体结构、均匀共掺杂的Ni2P纳米粒子和含磷官能团良好的亲锂性,有效地减小极化电压、锂沉积的形核过电位和体积效应,实现了大电流高锂载量下的持续均匀沉积/溶解,有效缓解体积变化和界面效应,显著提高了锂金属电池的循环寿命。
本发明属于电池材料领域,具体公开了一种多金属磷酸盐包覆钴酸锂正极材料及其制备方法,本发明创造性地在钴酸锂正极材料基体的表面包覆多金属磷酸盐层,制备方法如下:在纯水中加入配制好的金属盐溶液和高分子化合物进行反应,分散后再加入钴酸锂水溶液,搅拌同时加热形成凝胶;将凝胶混匀后添加到机械融合振实机中完成对材料的包覆;最后较低温度快速高效烧结后随炉自然冷却,得到多金属磷酸盐包覆的钴酸锂正极材料。本发明的钴酸锂正极材料基体表面的包覆层为快离子导体,可以提高材料的倍率性能;还能够阻止电极与电解液之间的反应,减缓钴酸锂材料的容量衰减;同时本发明的技术可以有效降低成品的残锂量,提高其存储性能。
本发明属于金属锂电池技术领域,具体公开了一种稳定金属锂沉积的电解液。该镀液为锂盐、有机溶剂和添加剂所组成的有机溶液,具体组成为:锂盐/有机溶剂体积比值的范围为0.5~3mol/L、添加剂含量为0.1~5wt.%。本发明所述镀液配方简单,成本低廉且实用,采用本发明所述特定组成和配比的电镀锂液可以在集流体表面实现均匀的锂沉积,有效避免枝晶的生长。所得到的电解液可以作为锂硫电池的电解液,实现长时间稳定的循环。
本发明提供了一种退役锂离子电池负极材料的修饰方法,属于锂离子电池负极材料回收技术领域。本发明以退役磷酸铁锂电池回收Li、Fe、P元素后的石墨负极粉末为原料,针对石墨粉中残存的含氟组分以及粒径较小、形貌不规整的碎屑夹杂物,在不需加入其他化学试剂条件下进行单体强化解离和氧化焙烧热处理,在高效脱除含氟组分的同时,使碎屑夹杂物在低温下充分燃烧,实现石墨粉的表面形貌修饰。本发明得到的再生石墨粉形貌规整、杂质氟含量低,电化学充放电性能得到有效提升,本发明的方法还具有操作简单、成本低的优势。
本发明提供了一种退役锂离子电池正极粘接剂的回收方法,目的是回收再利用正极粘接剂聚偏氟乙烯(PVDF),不仅降低了氟对正极材料的破坏及对生态环境的污染,还实现了固废再利用。本发明首先将退役锂离子电池正极粉浸泡于有机混合溶剂中,然后放置于反应釜中,机械搅拌使粘接剂充分溶解后,使用离心机分离并获得正极粉和含PVDF的有机溶液,使用真空旋蒸蒸发仪分离并回收有机混合溶剂和PVDF。本发明工艺简单、流程短、技术路线合理可行,利用该技术回收退役锂离子电池正极粉中的粘接剂,纯度高,回收率达98%以上,可作为制作管材和膜材的原材料,且分离的有机混合溶剂可循环使用。
本发明公开了一种磷酸亚铁锂正极材料的制备方法,该制备方法包括以下步骤:先将含锂化合物、含三价铁化合物、含磷化合物和掺杂金属元素化合物混配,将混合原料倒入反应釜中并加入去离子水,封闭反应釜;开启反应釜的搅拌和加热装置,使釜内温度升至150℃~300℃,保温进行水热合成反应,降温泄压至常压;将产物进行过滤,向得到的固体前驱体加入有机碳源并混合均匀;将得到的混合料置于惰性或弱还原性气氛保护下,然后升温焙烧,降至室温,再对焙烧产物进行粉碎、过筛,得到磷酸亚铁锂正极材料。本发明的制备方法简单易行、易于工业化、能耗低、成本小、更加环保、产品性能更加优异。
本发明涉及一种可快充的长寿命高电压钴酸锂正极材料的制备方法,包括下述的步骤:以Li2CO3和Co3O4为原料,并添加掺杂元素M,加入晶粒细化剂和助溶剂,进行第一次烧结;以第一次烧结物料为原料,加入晶粒细化剂和包覆化合物,进行表面包覆和第二次烧结;所述掺杂元素M为Ti4+、Zr4+、Mn4+、Sn4+、Ce4+、Ir3+、Mg2+、Al3+、V5+、Nb3+和Co2+中的一种或多种,掺杂后的钴酸锂分子式是LiCo1?xMyO2?y;所述晶粒细化剂为Ti、Nb、V、Al和Zr的氧化物中的一种或几种。本发明制备的钴酸锂正极材料,具有可快充、高容量、高电压、高循环、低成本的特点,应用于快充高电压条件下,电化学性能优异。
本发明涉及一种锂空气电池用微纳结构正极材料及其制备方法。所述制备方法包括金属氮化物催化剂前驱体与高碳聚合物共混于有机溶剂中静电纺丝制备中空复合原丝、原丝材料的预处理、复合纤维的氮化以及活化造孔扩孔四个步骤。本发明工艺方法简单、操作方便,所述的制备方法易实现纳米级的催化剂颗粒均匀分布在中空碳纤维中。所制备的正极材料管内中空、管壁多孔,且金属氮化物催化剂均匀分布在管壁三维孔洞内,高的比表面积为电池反应提供足够的场所,管内中空孔道能保证氧气扩散通道的畅通,兼具良好的离子传输能力和导电性。可有效提高锂空气电池的充放电容量,提高锂空气电池的大倍率性能和功率密度,减小电池内阻,纳米级金属氮化物的均匀分散能降低充放电极化,产业化前景良好。
本发明公开了一种磷酸铁锂复合材料及其制备方法与应用,该复合材料由内至外依次包括以下各层:磷酸铁锂、磷化铁和碳层。本发明的制备方法首先利用了浓磷酸与磷酸铁锂反应,于其表面生成了一层磷酸铁,后经氢气高温还原形成了磷化铁包覆层;再利用气相沉积于磷化铁包覆层表面制得了碳包覆层。本发明中制得的磷酸铁锂具有双重包覆层,该双重包覆层成分均匀,厚度可控,并且离子传导率和电子电导率高,提高了材料的电化学性能和压实密度。
本发明公开了一种添加4‑硝基苯磺酸五氟苯酯及同系物的电解液,包括锂盐、非水有机溶剂和添加剂,所述添加剂为4‑硝基苯磺酸五氟苯酯,其重量百分比含量为0.01wt%‑10wt%,所述非水有机溶剂为环状碳酸酯和链状碳酸酯的混合物,所述锂盐浓度为0.1‑4M。本发明采用上述一种添加4‑硝基苯磺酸五氟苯酯及同系物的电解液,解决了正极材料在高截止电压下的容量衰减问题、锂金属负极枝晶生长导致的安全隐患问题,通过添加添加剂,可有效延缓正极材料的容量衰减、抑制锂枝晶的生长,提升电池的寿命。
本发明公开了一种锂硒电池柔性正极的制备方法,该制备方法是在隔膜的一侧涂覆一层多壁碳纳米管多硒化物吸附层;再将中空碳纤维和单质硒的复合材料真空抽滤涂覆多壁碳纳米管的隔膜上,构筑一层活性物质层,即得锂硒电池柔性电极。该制备方法操作简单,成本低,制得的锂硒电池正极具有良好的力学性能和电学性能,载硒量大,活性物质的利用率高,大大提高了锂硒电池的循环稳定性和倍率性能,具备很高的应用潜力和商业价值。
本发明公开一种无粘结剂制备锡基/碳纤维毡高性能锂离子电池负极材料的方法,本发明方法包括如下步骤:将一定浓度的聚丙烯腈,氯化亚锡溶解于N’N-二甲基甲酰胺溶液中,磁力搅拌至溶液澄清,将该溶液进行静电纺丝,最后将得到的产物在高温下两次退火得到Sn-SnOx均匀负载的碳纤维毡的纳米复合材料。利用本发明制备的复合物,由于采用了静电纺丝的方法,金属-金属氧化物纳米颗粒均匀分散在缓冲基质碳纤维中,有效的提高锂离子电池负极材料的循环比容量和稳定性。本发明所涉及的制备工艺具有操作简单、成本低、效率高、易于实现规模化、产业化生产以及应用广泛等优点。
本发明公开了一种高电压锂离子电池用哌嗪离子液体电解液,包括有机溶剂和锂盐以及哌嗪类离子液体;这种哌嗪类离子液体具有价格便宜、性能良好、高电导率、电化学窗口宽、化学稳定性好以及溶解能力好的特点,含这种哌嗪类离子液体的电解液稳定性好,在高电压(4.5~5.0V)下能够保持稳定不发生氧化分解反应,能有效改善锂离子电池胀气问题,从而提高高电压锂离子电池的循环性能及安全性能。
本发明公开了一种高镍含量锂离子电池正极材料的制备方法,所述方法包括将合成的高镍前驱体进行煅烧,煅烧过程中通入非还原性气体,得高价镍的氧化物;然后用湿法混料或干法混料的方式将高价镍的氧化物与锂源进行混合,得混合料;再将混合料在氧气气氛下进行分段烧结,得到高镍含量锂离子电池正极材料。本发明方法制备的高镍含量锂离子电池正极材料除具有高容量的特性外,还有很好的循环稳定性和加工性能,本发明生产自动化程度高,对环境无污染,市场前景十分广阔。
一种锂离子电池正极复合材料及其前躯体的制备方法,具体地说涉及一种制备高纯低成本二元或三元前躯体,及由该前躯体制备高性能锂离子电池二元或三元正极复合材料的新方法,属于新能源材料及制备技术领域。具体步骤如下:(1)将带有结晶水的镍、钴、锰任两种或三种盐类固体原料放入反应器中,加热至熔融态;(2)惰性气体保护下通入氨气,根据以上盐在不同温度下的溶解度适当补充少量水或不加水,边搅拌边反应;(3)反应完全后将铵盐蒸出,取出固体,烘干,得到无定形二元或三元正极复合材料前躯体;(4)将前躯体与碳酸锂按一定比例混合,两段烧结法即可制备锂离子电池正极复合材料。该前躯体合成方法简单,避免使用氢氧化钠,无需分离提纯,即可得到高纯度基本无杂质的正极复合材料前躯体,而且无工业废水排放,副产物铵盐也可产生经济价值。由该前躯体制备得到的正极复合材料性能优异,便于产业化。
本发明属于锂金属电池领域,具体公开了一种二次电池用三维多孔金属锂负极及其制备和应用。所述三维多孔金属锂负极由多孔导电集流体,复合在多孔导电集流体表面的人造SEI膜以及负载在多孔导电集流体骨架上的金属锂组成。本发明多孔导电集流体可以显著降低金属锂负极循环过程中的表观电流密度;而人造SEI膜可以显著降低金属锂与电解液的接触,抑制界面副反应,实现在大电流密度下长寿命和高库伦效率的稳定循环。
本发明公开了一种低成本清洁处理废旧锂离子电池正极材料的方法:将预处理后得到的废旧锂离子电池正极材料进行高温还原、研磨,得到粒度为<200μm的还原产物;将还原产物进行水浸,固液分离,得到水浸渣和滤液;将水浸渣进行磁选分离,得到磁性镍钴合金和非磁性氧化锰;将滤液进行除杂,除杂后的滤液进行蒸发结晶,得到LiOH产品。本发明采用氢气对锂离子电池正极材料进行选择性还原,还原产物中锂元素很容易溶解到水溶液中,通过一次水浸,锂浸出率可达95%以上,不需要多段浸出,实现锂元素高回收率的同时简化了工艺流程。
一种复合型两级式溴化锂吸收式热泵及工作方法,其中溴化锂吸收式热泵包括相互连接的两台溴化锂热泵机组,第一溴化锂热泵机组包括相互连接的第一蒸发器、第一发生器、第一吸收器和第一冷凝器,第二溴化锂热泵机组包括相互连接的第二蒸发器、第二发生器、第二吸收器和第二冷凝器;第一吸收器的换热管输出端依次与第二吸收器、第二冷凝器、第一冷凝器的换热管连通。本发明还包括一种复合型两级式溴化锂吸收式热泵的工作方法。本发明一方面在中温水、低温水条件一定的情况下,能够降低机组发生器的温度,延长机组使用寿命;另一方面,扩大机组的放汽范围,有利于降低机组选型,减少成本;且机组制造非常方便。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!