合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 复合材料技术

> TiZr基非晶/TC21双层复合材料的制备和力学性能

TiZr基非晶/TC21双层复合材料的制备和力学性能

766   编辑:中冶有色技术网   来源:林师峰,徐东安,庄艳歆,张海峰,朱正旺  
2024-04-16 16:57:50
非晶合金具有高强度、高硬度和高弹性极限等优异性能,受到了极大的关注[1~3] 但是,非晶合金没有位错等缺陷[1, 4, 5],其室温塑性变形主要集中在极窄的剪切带[6],使其表现出脆性断裂 为了克服非晶合金的脆性断裂,可在其中生成合适的第二相 第二相能阻碍剪切带的扩展并诱发剪切带多重化、分支、相互交叉,可改善其室温塑性[1, 7, 8] 依据此原理,可制备出各种非晶复合材料 例如:Johnson等用半固态处理方法制备出Ti基[9, 10],Zr基[11, 12],CuZr基[13]等非晶复合材料;张海峰等[14~17]用熔体?渗法制备出一系列难熔金属增强非晶复合材料;李毅等[18, 19]、乔珺威等[20, 21]和陈光等[22, 23]用Bridgman方法调控温度梯度和凝固速率开发出一系列具有不同体积分数和尺寸的晶态相增强非晶复合材料 这些非晶复合材料,都具有良好的室温压缩塑性 根据在非晶基体里引入晶态相的方式,非晶复合材料可分为外加型非晶复合材料和内生型非晶复合材料[24] 内生型非晶复合材料,是在熔体凝固过程中原位析出晶态相或者非晶合金进行适当的热处理使非晶合金晶化析出晶态相[20] 这种类型的非晶复合材料最大的优点是其内生晶态相是原位生成的,与非晶基体界面结合良好 在载荷作用下,内生晶态相能有效地抑制剪切带的扩展,加剧剪切带的相互作用,从而使非晶合金的室温塑性显著提高 但是,内生型非晶复合材料对成分、冷却速率和热处理温度等因素极其敏感,较难精准地调控非晶复合材料中晶态相的体积分数、尺寸和形貌 特别是,内生型非晶复合材料的应用非常有限 外加型非晶复合材料,是外加纤维、颗粒或钨丝等晶态相增强非晶复合材料[25] 在工程应用领域,根据实际需要可设计出不同体积分数、外加晶态相和形态的非晶复合材料 这表明,外加型非晶复合材料的结构可灵活调控 外加型非晶复合材料的这些优点,使其在工程应用领域倍受关注 但是,在外加型非晶复合材料中非晶相与晶态相不相容,在非晶基体与外加相的界面处容易生成金属间化合物 这导致其塑性变形不如内生型非晶复合材料,甚至恶化其性能

TiZr基非晶合金和钛合金都是轻质合金,因此钛合金增韧的Ti基非晶复合材料具有潜在的应用价值 ZT3非晶合金[26] (名义成分:Ti32.8Zr30.2Ni5.3Cu9Be22.7,原子分数,%)的非晶形成能力极高,其压缩断裂强度高达1800 MPa TC21钛合金(名义成分:Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.1Si,质量分数,%)的室温塑性良好[27, 28] 鉴于此,本文选取ZT3非晶合金和TC21钛合金设计ZT3/TC21双层复合材料,研究制备工艺参数对这种双层复合材料界面结构和力学性能的影响

1 实验方法

用纯度高于99.8%(质量分数)的纯金属按Ti32.8Zr30.2Ni5.3Cu9Be22.7(ZT3,原子分数,%)配制100 g金属混合物 将这些金属混合物在高纯氩气保护下进行电弧熔炼 重复熔炼4次,得到ZT3母合金锭 从TC21钛合金上线切割出尺寸为80 mm×10 mm×5 mm的条样并将其磨抛,然后用无水乙醇超声清洗 将处理干净的TC21钛合金条样固定在尺寸为100 mm×10 mm×10 mm模具的一侧,在模具的另一侧放入适量的ZT3母合金锭 然后,将模具置于管式电阻炉中并抽真空,待真空度达到3.5 kPa时加热母合金锭到选定的温度(1073、1123和1173 K),充入氩气并保温3 min以使母合金熔体渗入并填满模具的空隙 最后将模具水淬,制备出ZT3/TC21双层复合材料

用铜模吸铸法将ZT3母合金制成直径为2 mm的棒材,并从中截取直径和高都为2 mm的圆柱作为熔滴棒材 再截取直径为8 mm、厚度为2 mm的TC21钛合金片并将其磨抛,用无水乙醇超声清洗后作为润湿实验的基片 将ZT3熔滴棒材置于钛合金基片的表面并放在润湿性测试装置内,调整水平后以10 K/min的升温速率加热到不同温度并保温一定的时间 在这期间实时观察液滴的形态

用Leo Supra 55扫描电子显微镜(带有X射线能量分散谱(EDS))观察双层复合材料失效前后的微观形貌 在Instron 5582万能力学试验机上进行三点弯曲实验,应变速率为0.1 mm/min,跨度为20 mm,试样的尺寸为25 mm×4 mm×2 mm,ZT3非晶合金与TC21钛合金在厚度方向上的比为1∶1 用分离式霍普金森压杆测试圆棒样品的动态压缩力学性能 样品的直径和长度都为4 mm

2 结果和讨论2.1 ZT3非晶合金在TC21钛合金上的润湿行为

用外加法制备双相复合材料,最关键的是两相的界面结合[29~31] 用液相工艺制备复合材料,外加相与液相的结合涉及到溶解、扩散和界面反应 图1a给出了ZT3合金熔体/TC21钛合金的润湿角随温度的变化 可以看出,开始时接触角很大,随着温度的升高润湿角逐渐减小 温度进一步升高使液滴在TC21钛合金基片的铺展明显加快随后又逐渐减缓,最终润湿角降低到10° 这表明,提高温度可改善ZT3与TC21钛合金基片的湿润性[30]

图1



图1润湿角与温度和时间的关系

Fig.1Relationship between contact angle and temperature during continuous heating process (a) and increasing time (b)

图1b给出了保温温度为963 K时ZT3合金熔体/TC21钛合金润湿角随时间的变化 可以看出,在温度为963 K时初始润湿角约为41°,与连续升温过程中温度达963 K时的接触角相同(图1a),但是此时接触角并没有达到稳态 保温30 s后润湿角减小到22°,继续保温到60 s润湿角降至约12° 然后,随着保温时间的增加,润湿角低于10°并保持稳定 随着温度的升高和时间的延长,ZT3合金熔体的粘度降低,润湿阻滞力随之降低;同时,在温度升高和时间增加的过程中,ZT3合金熔体与钛合金基片之间的溶解扩散加剧,润湿驱动力增大使熔体在基片上迅速铺展开,润湿速率提高使润湿角迅速减小 随着润湿过程的进行,润湿驱动力减小直至等于粘滞阻力,润湿进入平衡过程后润湿角趋于恒定 这表明,ZT3非晶合金与TC21钛合金基片具有良好的润湿性,制备ZT3/TC21双层复合材料是可行的

2.2 双层复合材料的微观结构

图2a给出了在不同温度制备双层非晶复合材料的示意图,图2b~d给出了在1073、1123和1173 K制备的双层复合材料的界面形貌扫描图 可以看出,这种双层复合材料与ZT3/Ti55的界面特征相似[30],界面处都没有生成金属间化合物,但是钛合金向非晶一侧溶解扩散 这种界面属于第二类界面,其湿润性非常好,与润湿实验的结果一致 从图2可见,在ZT3非晶合金与TC21钛合金的界面生成了界面层,是非晶合金熔体与TC21钛合金发生剧烈固/液交互作用的结果 钛合金向非晶一侧溶解扩散,在界面生成了界面层 这种界面层的厚度,受复合材料制备温度的影响 制备温度越高,则界面层越厚 从图2还能观察到,界面层明显向非晶合金的熔体里生长,呈现出典型的树枝状 提高制备温度,则树枝状界面层向非晶合金熔体内生长得更深、更粗 这些树枝晶在保温过程中部分从界面层剥落而溶解进非晶合金熔体里,在快冷过程中从非晶合金熔体里以枝晶相的形式析出 制备温度越高,非晶合金里的枝晶相就越粗、分布范围越广、体积分数越高 其原因是,制备温度的升高能促进界面层的生成和以树枝晶的形式向非晶合金熔体里生长,并加剧界面层的溶解

图2



图2在不同温度制备的双层复合材料的示意图和界面处的微观结构扫描图

Fig.2Schematic diagram of the whole dual-layer composites (a) and SEM images of the microstructures at the interfaces between metallic glasses and TC21 titanium alloys for the dual-layer composites prepared under different temperatures (b~d)

ZT3/TC21的复合主要是通过溶解扩散连接的 影响溶解扩散的因素很多 根据菲克第一定律[32]

J=-D?C?X

浓度梯度D固定时原子的扩散主要与扩散系数相关,ZT3/TC21的结合属于典型的原子扩散 式中J为扩散通量(单位时间内沿扩散方向通过单位面积的扩散物质量);D为扩散系数;X为沿扩散方向的距离 ZT3/TC21的结合,其组元性质、组元浓度等在初始时都相同 因此,温度是影响界面层溶解扩散的主要因素 根据Arrhenius公式D=D0exp(QKT),温度越高则原子动能越大,扩散系数D越大,扩散速率随之提高 在ZT3/TC21复合过程中,随着温度的升高,界面处变得更活跃的原子使固态钛合金向非晶熔体里溶解扩散的速率提高 因此,随着温度的升高,钛合金扩散的量更多,扩散迁移的距离更远,最后在非晶基体中生成枝晶相 图2给出了界面的形貌

在ZT3/TC21的固/液交互作用过程中,固态TC21钛合金成分扩散使TC21钛合金溶解 同时,因为ZT3非晶合金熔体中的Zr、Cu、Ni原子浓度比固态TC21钛合金高、扩散驱动力较大,使其向固态的TC21钛合金中扩散 ZT3体系的非晶形成能力非常高[26],微量成分的扩散不会明显降低非晶合金的形成能力 ZT3非晶合金熔体里的Cu、Ni、Be元素在平衡的β枝晶相里的固溶度较低,在凝固过程中优先固溶于非晶合金基体中,这有利于非晶合金的形成,又不会产生明显的扩散[7, 8] 而Zr元素的部分扩散不会使非晶合金形成能力的急剧降低 根据菲克第一定律,Zr元素向TC21钛合金内扩散的驱动力呈梯度变化 这种梯度变化,反映在与TC21钛合金连接的界面层的成分分布,如图3所示 从图3可见,树枝状、与非晶合金相连接的晶态相为枝晶相,其成分均匀,而与TC21钛合金连接的界面层的成分呈现梯度变化 界面层的主要成分是Ti、Zr、Al Ti元素是界面层的主要成分,Zr元素是非晶合金熔体内的成分向TC21钛合金扩散而累积的 Al元素主要源于TC21钛合金,在固/液交互作用过程中也向非晶熔体内扩散,因其含量很低而没有明显的特征 制备温度的升高使成分(主要Zr元素)扩散的驱动力变大,从而使界面层增厚 界面层变厚又促进界面层以树枝晶的形式向非晶熔体内生长,从而加剧了界面层的溶解

图3



图3在1173 K制备的双层复合材料界面处的微观结构线性扫描图和对应的成分分布

Fig.3Line scanning analysis result and the corresponding element profiles for the dual-layer composites prepared at 1173 K

为了进一步明确成分的扩散,对在1123 K制备的双层复合材料界面处非晶一侧的析出相进行EDS检测,得到的成分列于表1 根据菲克第一定律,浓度差产生成分的相互扩散 开始时,Ti、Al、Cr、Nb、Mo和Sn元素的含量明显高于非晶合金,界面两侧的浓度差导致成分扩散 析出相含有Al、Cr、Nb、Mo和Sn元素,表明在制备复合材料的过程中这些元素跨越界面扩散到非晶熔体一侧,凝固时富集在析出相内 析出相的Ti含量明显比非晶基体的高,其原因是钛合金里的Ti元素扩散到非晶合金熔体一侧并在凝固过程中以枝晶相的形式析出

Table 1

表1

表1在1123 K制备的双层复合材料界面处的枝晶相与非晶基体的含量

Table 1Compositions of dendrites and metallic glass matrix in dual-layer composite prepared at the temperature of 1123 K (atomic fraction, %)

Compositions Al Ti Cr Ni Cu Zr Nb Mo Sn
Dendrites 4.72 69.61 1.27 1.99 3.60 16.98 0.25 1.03 0.54
Metallic glass matrix 3.69 58.07 1.13 5.37 7.95 23.56 0.44 0.42 0.31


2.3 双层复合材料的弯曲力学性能

图4a给出了ZT3非晶合金和在不同温度制备的双层复合材料的弯曲应力-位移曲线 弯曲力学实验如图4a中的插图所示,ZT3非晶合金承受压应力,TC21钛合金承受拉应力 韧性的TC21钛合金处于拉应力一侧,能限制ZT3非晶合金的开裂,防止材料过早失效 虽然ZT3非晶合金的弯曲强度很高,但是发生了脆性断裂 双层复合材料的变形,属于弹性变形和塑性变形 在1073和1123 K制备的双层复合材料其弯曲应力-位移曲线达到最大应力值(分别为2045和2177 MPa)后,随着位移的增加,弯曲应力逐渐降低 其原因是,试样在弯曲过程中出现部分裂纹而使横截面积减小 但是,在1173 K制备的复合材料表现出明显的加工硬化,抗弯强度达到2137 MPa时并没有出现应力达到最大值后逐渐下降的现象 三种温度制备的双层复合材料其三点弯曲应力-位移曲线出现锯齿现象(图4b)是二次剪切带形核和剪切带扩展所致 这表明,非晶合金里的单一主剪切带多重化促进了材料的弯曲塑性 三种温度制备的双层复合材料的塑性相近,但是1073 K制备的材料其抗弯强度略低,为2045 MPa

图4



图4ZT3非晶合金和在不同温度制备的双层复合材料的弯曲应力-挠度曲线和在1173 K制备的复合材料的弯曲应力-挠度曲线的局部放大图

Fig.4Flexural stress-deflection curves of ZT3 BMG and the dual-layer composites under different temperature (a) and local enlarge flexural stress-deflection curve of the composites prepared at 1173 K (b)

图5给出了弯曲试验后样品的表面形貌 可以看出,在每个试样的拉应力一侧产生滑移带,在压应力一侧产生剪切带 进行弯曲实验时处于拉应力一侧的应力最大且最先达到材料的屈服点,主导着材料的最终断裂 但是TC21钛合金具有良好的塑性变形能力,在受载过程中处于拉应力一侧的应力得到了释放,使材料不易发生断裂 这是双层复合材料具有良好弯曲塑性的主要原因 但是,处于压应力一侧的非晶合金很脆,在受载过程中容易发生灾难性断裂 这表明,控制双层复合材料弯曲性能的区域是处于压应力一侧的非晶合金

图5



图5在不同温度制备的双层复合材料样品弯曲失效后的侧面扫描图

Fig.5SEM image of the dual-layer composites prepared at 1073 K (a~c), 1123 K (d~f) and 1173 K (g~i) after failure

在非晶合金的一侧,观察到大量剪切带和明显的剪切台阶 主剪切带沿着与自由平面呈约50°的方向扩展,与文献[33]报道的非晶合金在弯曲载荷作用下剪切带的扩展一致 二次剪切带和三次剪切带大量分叉,且其间距不均匀 靠近样品自由平面的主剪切带处,材料处于压应力高度束缚状态,二次剪切带形成团簇分支 剪切带的分叉使彼此间相互交叉和缠结,有利于改善双层复合材料的韧性,避免非晶合金中的剪切带很快演化成裂纹而使材料失效 样品持续弯曲时,间距较大的主剪切带很快扩展到靠近材料的中轴 从自由界面到中轴处应力逐渐降低,剪切带扩展的尖端应力也随之降低[34] 这些剪切带的扩展减缓了其他剪切带的应力集中,具有良好的应力屏蔽作用

双层复合材料的界面是裂纹产生的形核点 界面处应力的高度集中,使裂纹在界面处萌生[35, 36] 从图5可见,所有双层复合材料的最后弯曲断裂都是裂纹从界面处产生并扩展所致 图1表明,ZT3非晶合金与TC21钛合金具有良好的润湿性,其界面结合良好 大部分层状复合材料在载荷作用过程中均出现界面分层,最终使材料失效[37, 38] 从图5可见,裂纹虽然从界面处萌生,但是当前制备的双层复合材料在载荷持续增加过程中并没有出现ZT3非晶合金与TC21钛合金分层 这进一步说明,ZT3非晶合金与TC21钛合金界面结合牢固 这也是当前制备的双层复合材料具有较好弯曲性能的主要原因

TC21钛合金具有良好的韧性,在载荷作用下不会先开裂生成裂纹 界面处的高应力集中,只能使裂纹在非晶合金一侧启动 裂纹先从界面处萌生,在非晶合金的一侧扩展 从图5还可见,在裂纹扩展过程中主裂纹周围出现一些明显的剪切带 这些剪切带,能有效缓解非晶合金的局部应力集中 裂纹尖端的塑性变形,是材料增韧的主要机制之一[39],能使裂纹钝化而避免非晶合金过早失效,有利于提高材料的抗损伤能力 但是从图5可见,在三种温度制备的复合材料其断裂特征明显不同 1073和1123 K制备的复合材料最后都断裂,而1173 K制备的复合材料最后虽然失效但是并没有断裂 1123 K制备的复合材料断裂裂纹明显比1073 K制备的复合材料偏转幅度大,有利于提高材料的抗断裂能力 对比图5a、d和g可见,制备温度提高使裂纹的数量增加 在受载过程中多重裂纹的产生能释放裂纹尖端的应力集中,避免材料过早失效 对比图5b、e和h可见,1073 K制备的复合材料萌生裂纹后,裂纹的尖端虽然明显钝化,但是其扩展路径对垂直于界面方向的偏离较小 制备温度高于1123 K的材料,裂纹萌生后其扩展方向严重偏离与界面垂直的方向,而且裂纹在扩展过程中还与其他裂纹相汇 这种模式的裂纹扩展,明显提高了材料的抗损伤能力 同时,制备温度的提高使非晶合金中枝晶相的体积分数和尺寸增大,能阻碍裂纹扩展而使裂纹扩展路径变得曲折,如图5所示 从图4也可见,制备温度的提高,使材料的加工硬化能力更明显 这种能力的提高源于多重裂纹的产生以及裂纹的大幅度偏转扩展 多重裂纹的产生,其实与界面处的界面层厚度(包含界面处生长的枝晶相)有关 从图5i可见,较厚的界面层使裂纹直接在界面层内产生,并沿着平行于界面层的方向扩展 这意味着,这种复合材料中的界面层是裂纹的形核点,而且其抗损伤能力较弱 因此,制备温度的提高使界面处生成的界面层厚度增加,有利于裂纹的产生 从图5c、f和i可见,1073和1123 K制备的非晶复合材料其界面层较薄,在一个应力集中点处只产生单一的裂纹 但是,1173 K制备的非晶复合材料其界面层较厚,在一个应力集中点处萌生两个裂纹

从图4可见,1073 K制备的双层复合材料其强度低于在其他两个温度制备的复合材料 实际上,TC21钛合金的韧性非常好,其性能对材料最终的性能有很大的影响 制备温度不同,对TC21钛合金的性能也有很大的影响 图6给出了在1073、1123和1173 K处理过后的TC21钛合金拉伸应力-应变曲线 可以看出,TC21钛合金在三种制备温度下均表现出良好的加工硬化能力,是双层复合材料具有优异加工硬化能力的主要原因 随着制备温度的提高,TC21钛合金的加工硬化随之增强,也使双层复合材料的加工硬化能力的提高,如图4a所示 从图中还可见,1073 K制备的TC21钛合金的断裂强度最低,为831 MPa 而1123和1173 K制备的TC21钛合金的断裂强度比较接近,与1073 K处理的钛合金相比明显提高,分别达到995和1017 MPa 1123和1173 K制备的TC21钛合金其韧性并没有降低而是改善了,不会降低制备出的双层复合材料的韧性 TC21钛合金处于拉应力一侧,其断裂强度对材料的最终失效起关键性作用 在1073 K制备的复合材料中TC21钛合金的断裂强度最低,从而使双层复合材料的弯曲强度最低

图6



图6在不同温度处理的TC21钛合金的拉伸应力-应变曲线

Fig.6Tensile stress-strain curves of the TC21 titanium alloy after heating treatment under different temperature

2.4 双层复合材料的动态压缩力学性能

在实际的工程应用中,材料有时承受动态载荷或高应变速率载荷 Johnson等[40]和Jiang等[41]研究了Zr基非晶合金遭受准静态载荷和动态载荷时截然不同的特征 Zr基非晶合金承受准静态压缩载荷时表现出显著的塑性变形,而承受动态载荷作用时却表现出典型的脆性断裂 因此,有必要研究双层复合材料的动态压缩力学性能 图7给出了在1073、1123和1173 K制备的双层复合材料的动态压缩应力-应变曲线和对应的应变速率随时间的变化 动态压缩实验的应变速率很高,如图7b所示 应变速率为1000 s-1时,ZT3非晶合金的动态压缩强度约为700 MPa,且其动态压缩强度随着应变速率的增加而降低[42] 本文制备的双层复合材料,其动态压缩强度为901~1326 MPa 对比结果表明,双层复合材料的动态压缩强度明显比ZT3非晶合金更优异 其主要原因是:首先,TC21钛合金对ZT3非晶合金的束缚作用避免ZT3非晶合金过早失效;其次,应变速率为1500 s-1时TC21钛合金的动态压缩强度和塑性应变分别为1086~1287 MPa和4.4%~6.5%[43] TC21钛合金良好的动态压缩性能既能提高ZT3非晶合金的动态压缩强度又能通过塑性变形释放材料的部分应变能,最终使材料的动态压缩力学性能提高

图7



图7在不同温度制备的双层复合材料的动态压缩应力-应变曲线和在动态压缩过程中试样的应变速率与时间的关系

Fig.7True dynamic compressive stress-strain curves for the dual-layer composites under different temperature (a) and the variation of strain rate with time under compressive loading for every sample (b)

动态压缩应力-应变曲线表明,应力达到屈服强度后所有的双层复合材料都进入软化阶段,直至最后断裂 文献[34]揭示,非晶合金或者非晶复合材料的动态压缩力学性能并没有表现出准静态载荷条件作用下的稳定塑性流变行为,因为在动态变形过程中没有足够的时间触动剪切带多重化 另外,该双层复合材料中的TC21钛合金只限制非晶合金一侧的变形而对非晶合金的变形束缚较少 在1073 K制备的非晶复合材料其动态压缩强度最大,为1264~1326 MPa 随着制备温度的提高,材料的动态压缩强度降低 在1173 K制备的双层复合材料,其强度降低到901~916 MPa 产生这种动态压缩性能不同的主要原因是:在高应变速率载荷作用下不会发生在静态载荷条件下出现的裂纹稳定扩展 而随着制备温度的提高界面层的厚度增大,容易诱发裂纹的产生 极高的应变速率产生的裂纹,使材料迅速失效

3 结论

(1) ZT3非晶合金与TC21钛合金之间具有良好的润湿性 随着制备温度的提高,润湿角很快减小,制备温度提高到1070 K,润湿角降低至10°;在963 K保温过程中,润湿角随着时间的延长极快地减小,最后稳定在10°以下

(2) 在不同温度制备ZT3非晶合金/TC21钛合金双层复合材料,TC21钛合金发生不同程度的溶解,在界面生成一层明显的界面层,在非晶合金一侧析出部分枝晶相 随着制备温度的提高,界面层变厚、枝晶相的析出增加、枝晶相分布的范围更广

(3) 不同温度制备的ZT3非晶合金/TC21钛合金双层复合材料具有良好的室温弯曲塑性,并保持其弯曲强度达到2177 MPa,其动态压缩强度为901~1326 MPa 随着制备温度的提高,材料的动态压缩强度降低

参考文献

View Option 原文顺序文献年度倒序文中引用次数倒序被引期刊影响因子

[1]

Lu Y, Su S, Zhang S, et al.

Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility

[J]. Acta Mater., 2021, 206: 116632

DOIURL [本文引用: 3]

[2]

Zhang C, Wang W, Xing W, et al.

Understanding on toughening mechanism of bioinspired bulk metallic glassy composites by thermal spray additive manufacturing

[J]. Scr. Mater., 2020, 177: 112

DOIURL

[3]

Lin S F, Liu D M, Zhu Z W, et al.

New Ti-based bulk metallic glasses with exceptional glass forming ability

[J]. J. Non-Cryst. Solids., 2018, 502: 71

DOIURL [本文引用: 1]

[4]

Xing D, Chen S S, Chen P D, et al.

Effect of Fe microalloying on plastic deformation behavior of Cu-Zr-Al metallic glasses

[J]. Chin. J. Mater. Res., 2021, 35(11): 850

DOI [本文引用: 1] " />

The mechanical properties of bulk metallic glasses (BMGs) and their composites have been under intense investigation for many years, owing to their unique combination of high strength and elastic limit. However, because of their highly localized deformation mechanism, BMGs are typically considered to be brittle materials and are not suitable for structural applications. Recently, highly-toughened BMG composites have been created in a Zr-Ti-based system with mechanical properties comparable with high-performance crystalline alloys. In this work, we present a series of low-density, Ti-based BMG composites with combinations of high strength, tensile ductility, and excellent fracture toughness.

[10]

Kolodziejska J A, Kozachkov H, Kranjc K, et al.

Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites

[J]. Sci. Rep., 2016, 6(1): 22563

DOI [本文引用: 1] " />

Deformation and fracture behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass and its composite containing transverse tungsten fibers in compression were investigated. The monolithic metallic glass and the tungsten fiber composite specimens with aspect ratios of 2 and 1 are shown to have essentially the same ultimate strength under compression. The damage processes in the bulk metallic glass composite consisted of fiber cracking, followed by initiation of shear band in the glassy matrix mainly from the impingement of the fiber crack on the fiber/matrix interface. The site of the shear band initiation in the matrix is consistent with the prediction of finite element modeling. Evidence is present that the tungsten fiber can resist the propagation of the shear band in the glassy matrix. However, the compressive strain to failure substantially decreased in the present composite compared with the composites containing longitudinal tungsten fibers. Finally, the two composite specimens fractured in a shear mode and almost all the tungsten fibers contained cracks.

[17]

Li Z K, Fu H M, Sha P F, et al.

Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

[J]. Sci. Rep., 2015, 5(1): 8967

DOI [本文引用: 1] " />

We present a systematic study of homogeneous deformation in a La-based bulk metallic glass and two in situ composites based on the same glass. In contrast to prior investigations, which focused on relatively dilute composites, in this work the reinforcement volume percentages were more concentrated at 37% and 52%—near or above the percolation threshold (35–40%). Hot uniaxial compressive testing was conducted over a wide strain rate range from 10?2to 10?5s?1at a temperature near the glass transition. For such concentrated composites, the homogeneous deformation behavior appeared to be dominated by the properties of the reinforcement phase; in the present case the La reinforcements deformed by glide-controlled creep. Post-deformation analysis suggested that bulk metallic glass matrix composites were susceptible to microstructural evolution, which appeared to be enhanced by deformation, in contrast with a stress-free anneal. Consequently, unreinforced bulk metallic glass appeared to be more structurally stable than its composites during deformation near the glass transition.

[20]

Qiao J W.

In-situ dendrite/metallic glass matrix composites: a review

[J]. J. Mater. Sci. Technol., 2013, 29(8): 685

DOI [本文引用: 2] " />

Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) alloy samples in both rod and plate geometry were prepared. Different free volume states were obtained through thermal treatment. The plastic deformation ability of the BMGs was investigated through both a three-point bending test and compression test. The three-point bending results reveal the important role of free volume content on the formation of multiple shear bands, as the shear band propagation can be efficiently stopped due to the existence of the stress gradient from the surface to the neutral plane. In compression, the sample size rather than free volume controls the shear banding behavior.

[35]

Guo W, Kato H, Yamada R, et al.

Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method

[J]. J. Alloys Compd., 2017, 707: 332

DOIURL [本文引用: 1]

[36]

Wu F F, Chan K C, Li S T, et al.

Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading

[J]. J. Mater. Sci., 2013, 49(5): 2164

DOIURL [本文引用: 1]

[37]

Liu B X, Huang L J, Kaveendran B, et al.

Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status

[J]. Composites B, 2017, 108: 377

DOIURL [本文引用: 1]

[38]

Liu B X, Huang L J, Rong X D, et al.

Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes

[J]. Compos. Sci. Technol., 2016, 126: 94

DOIURL [本文引用: 1]

[39]

Ritchie R O.

The conflicts between strength and toughness

[J]. Nat. Mater., 2011, 10(11): 817

DOIPMID [本文引用: 1] class="outline_tb" " />

Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) alloy were prepared by copper-mold injection casting method and the effect of Fe microalloying on the glass-forming ability and mechanical properties of Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) metallic glasses were investigated. The results show that the glass-forming ability of the alloy decreases with increasing of Fe content, while the plastic deformation ability at room temperature increases obviously. It is found that with the increase of minor Fe content more free volume will be introduced into the glassy matrix, and the inhomogeneity of composition and free volume distribution in the matrix will increase as a result of the positive mixing enthalpy of Fe and Cu. These factors jointly result in enhanced plasticity of metallic glass with high Fe content.

邢 栋, 陈双双, 宋佩頔 等.

Fe微合金化对Cu-Zr-Al非晶合金塑性变形行为的影响及其机理

[J]. 材料研究学报, 2021, 35(11): 850

[5]

Li T T, Hu Y, Cui X M, et al.

Micro-hardness and Shear Bands of Zr-Al-Cu-Ni-Ag Bulk Metallic Glass Composites

[J]. Chin. J. Mater. Res., 2014, 28(10): 730

李亭亭, 胡 勇, 崔晓明 等.

Zr-Al-Cu-Ni-Ag非晶复合材料的显微硬度和剪切带形貌

[J]. 材料研究学报, 2014, 28(10): 730

[6]

Lewandowski J J, Greer A L.

Temperature rise at shear bands in metallic glasses

[J]. Nat. Mater., 2005, 5(1): 15

[7]

Lin S F, Ge S F, Zhu Z W, et al.

Double toughening Ti-based bulk metallic glass composite with high toughness, strength and tensile ductility via phase engineering

[J]. Appl. Mater. Today., 2021, 22: 100944

[本文引用: 2]

[8]

Lin S F, Zhu Z W, Ge S F, et al.

Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy

[J]. J. Mater. Sci. Technol., 2020, 50: 128

[本文引用: 2]

[9]

Hofmann D C, Suh J Y, Wiest A, et al.

Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility

[J]. PNAS., 2008, 105(51): 20136

PMID " />

The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error.

[11]

Hofmann D C, Suh J Y, Wiest A, et al.

Designing metallic glass matrix composites with high toughness and tensile ductility

[J]. Nature, 2008, 451(7182): 1085

[12]

Szuecs F, Kim C P, Johnson W L.

Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite

[J]. Acta Mater., 2001, 49(9): 1507

[13]

Kozachkov H, Kolodziejska J, Johnson W L, et al.

Effect of cooling rate on the volume fraction of B2 phases in a CuZrAlCo metallic glass matrix composite

[J]. Intermetallic., 2013, 39: 89

[14]

Zhang H F, Li H, Wang A M, et al.

Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite

[J]. Intermetallic., 2009, 17(12): 1070

[15]

Zhang B, Fu H M, Zhang H F, et al.

Synthesis and property of short tungsten fibre/Zr-based metallic glass composite

[J]. J. Mater. Sci. Technol., 2019, 35: 1347

[16]

Zhang H, Liu L Z, Zhang Z F, et al.

Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading

[J]. J. Mater. Res., 2006, 21(6): 1375

" />

The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously.

[18]

Tang H, Zhang Y, Li Y.

Synthesis of La-based in-situ bulk metallic glass matrix composite

[J]. Intermetallic, 2002, 10(11-12): 1203

[19]

Fu X L, Li Y, Schuh C A.

Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement

[J]. J. Mater. Res., 2011, 22(6): 1564

" />

<p>The advanced fabrication of in-situ dendrite/metallic glass matrix (MGM) composites is reviewed. Herein, the semi-solid processing and Bridgman solidification are two methods, which can make the dendrites homogeneously dispersed within the metallic glass matrix. Upon quasi-static compressive loading at room temperature, almost all the in-situ composites exhibit improved plasticity, due to the effective block to the fast propagation of shear bands. Upon quasi-static tensile loading at room temperature, although the composites possess tensile ductility, the inhomogeneous deformation and associated softening dominates. High volume-fractioned dendrites and network structures make in-situ composites distinguishingly plastic upon dynamic compression. In-situ composite exhibits high tensile strength and softening (necking) in the supercooled liquid region, since the presence of high volume-fractioned dendrites lowers the rheology of the viscous glass matrix at high temperatures. At cryogenic temperatures, a distinguishingly-increased maximum strength is available; however, a ductile-to-brittle transition seems to be present by lowering the temperature. Besides, improved tension&ndash;tension fatigue limit of 473&nbsp;MPa and four-point-bending fatigue limit of 567&nbsp;MPa are gained for Zr<sub>58.5</sub>Ti<sub>14.3</sub>Nb<sub>5.2</sub>Cu<sub>6.1</sub>Ni<sub>4.9</sub>Be<sub>11.0</sub> MGM composites. High volume-fraction dendrites within the glass matrix induce increased effectiveness on the blunting and propagating resistance of the fatigue-crack tip. The fracture toughness of in-situ composites is comparable to those of the toughest steels and crystalline Ti alloys. During steady-state crack-growth, the confinement of damage by in-situ dendrites results in enhancement of the toughness.</p>

[21]

Qiao J W, Wang S, Zhang Y, et al.

Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification

[J]. Appl. Phys. Lett., 2009, 94(15): 151905

[22]

Cheng J L, Chen G, Xu F, et al.

Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites

[J]. Intermetallic, 2010, 18(12): 2425

[23]

Zhang X L, Chen G, Du Y L.

Synthesis of plastic Mg-based bulk-metallic-glass matrix composites by bridgman solidification

[J]. Metall. Mater. Trans. A, 2012, 43(8): 2604

[24]

Qiao J W, Jia H L, Liaw P K,

Metallic glass matrix composites

[J]. Mater. Sci. Eng. R., 2016, 100: 1

[25]

Chen S, Li W Q, Zhang L, et al.

Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites

[J]. Composites B, 2020, 199: 108219

[26]

Tang M Q, Zhang H F, Zhu Z W, et al.

TiZr-base bulk metallic glass with over 50 mm in diameter

[J]. J. Mater. Sci. Technol., 2010, 26(6): 481

[本文引用: 2]

[27]

Wen X, Wan M P, Huang C W, et al.

Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy

[J]. Mater. Des., 2019, 180: 107898

[28]

Long W, Zhang S, Liang Y L, et al.

Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy

[J]. Int. J. Miner. Metall. Mater., 2020, 28(2): 296

[29]

Ding S, Kong J, Schroers J.

Wetting of bulk metallic glass forming liquids on metals and ceramics

[J]. J. Appl. Phys., 2011, 110(4): 043508

[30]

Ma G, Lv S, Lu Z, et al.

Wetting behavior and interfacial characteristic of Ti32.8Zr30.2Cu9Ni5.3Be22.7/Ti55 alloy system

[J]. Mater. Chem. Phys., 2021, 270: 124759

[本文引用: 2]

[31]

Ma G F, Li Z K, He C L, et al.

Wetting behaviors and interfacial characteristics of TiZr-based bulk metallic glass/W substrate

[J]. J. Alloys Compd., 2013, 549: 254

[32]

Ghoneim A, Ojo O A.

Numerical modeling and simulation of a diffusion-controlled liquid-solid phase change in polycrystalline solids

[J]. Comput. Mater. Sci., 2011, 50(3): 1102

[33]

Conner R D, Li Y, Nix W D, et al.

Shear band spacing under bending of Zr-based metallic glass plates

[J]. Acta Mater., 2004, 52(8): 2429

[34]

Zhang L, Jiang F, Zhao Y, et al.

Shear band multiplication aided by free volume under three-point bending

[J]. J. Mater. Res., 2011, 25(2): 283

[本文引用: 2] " />

The attainment of both strength and toughness is a vital requirement for most structural materials; unfortunately these properties are generally mutually exclusive. Although the quest continues for stronger and harder materials, these have little to no use as bulk structural materials without appropriate fracture resistance. It is the lower-strength, and hence higher-toughness, materials that find use for most safety-critical applications where premature or, worse still, catastrophic fracture is unacceptable. For these reasons, the development of strong and tough (damage-tolerant) materials has traditionally been an exercise in compromise between hardness versus ductility. Drawing examples from metallic glasses, natural and biological materials, and structural and biomimetic ceramics, we examine some of the newer strategies in dealing with this conflict. Specifically, we focus on the interplay between the mechanisms that individually contribute to strength and toughness, noting that these phenomena can originate from very different lengthscales in a material's structural architecture. We show how these new and natural materials can defeat the conflict of strength versus toughness and achieve unprecedented levels of damage tolerance within their respective material classes.

[40]

Lu J, Ravichandran G, Johnson W L.

Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures

[J]. Acta Mater., 2003, 51(12): 3429

[41]

Li M C, Jiang M Q, Yang S, et al.

Effect of strain rate on yielding strength of a Zr-based bulk metallic glass

[J]. Mater. Sci. Eng. A, 2017, 680: 21

[42]

Li W Q, Zhu Z W, Li G J, et al.

Correlation between dynamic compressive strength and fracture behaviors of bulk metallic glasses

[J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33(10): 1407

[43]

Zhang J X, Yi X B, Shen J C, et al.

Influence of solution and ambient temperature on dynamic compression mechanical properties and adiabatic shear sensitivity of TC21 titanium alloy

[J]. Materials Reports, 2020, 34(12): 24092

张俊喜, 易湘斌, 沈建成 等.

固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响

[J]. 材料导报, 2020, 34(12): 24092

Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility

3

2021

声明:
“TiZr基非晶/TC21双层复合材料的制备和力学性能” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第五届中国浮选大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记