本发明提供一种钛板坯的制备方法,该方法包括将海绵钛压制成电极块,或者将海绵钛和作为合金元素的中间合金和/或金属混合均匀后压制成电极块,将压制的电极块焊接成圆柱形电极,将该圆柱形电极采用真空自耗电弧熔炼,得到圆柱形铸锭;将得到的圆柱形铸锭经过扒皮后在800℃-850℃保温90-180分钟,再升温至950℃-1050℃后保温180-420分钟,然后经过一个火次锻拔后锻造成截面为长方形的中间坯;将得到的中间坯进行热轧开坯,得到钛板坯。根据本发明的方法,其操作方便,并且得到的钛板坯厚度公差小,表面质量好。
本发明公开了超声旋流电解装置,电解槽本体(9)上部安装上封盖(1),电解槽本体(9)下部安装锥形下封盖(12),电解液进料口(10)经管道连接电解液循环泵和电解液储槽,阴极(7)位于电解槽本体(9)的内壁,电解槽本体(9)的中心安装阳极(5),阳极(5)与阴极(7)之间形成环形电解腔(8),电解槽本体(9)的外壁上分布安装超声振荡器(6),超声振荡器(6)连接超声发生器,整体构成电解装置。本发明利用超声波的作用对电镀废液中的有价金属进行选择性电积,特别适合用于电子行业中所产生的低浓度、成分复杂废液的选择性电积回收其中的贵金属。
一种两步法对含有褐铁矿和腐泥土的红土矿进行浸出的方法。第一步包括将矿石与浓无机酸混合并发生反应,第二步包括制备酸/矿石混合物在水中的浆料并对混合物进行浸出以溶解镍和钴。铁主要以黄钾铁矾以外的三价铁的氧化物或氢氧化物形式进入固体浸出残渣中,与镍和钴有效地分离。
一种从硫酸镍溶液中去除微量有机物的方法,其特征在于采用磺化煤油作萃取剂,将硫酸镍溶液中的有机相萃取分离去除。本发明的方法采用萃取工艺,将硫酸镍溶液中少量的有机物,通过净置分离、萃取、过滤及吸附方法,分别将其中的漂浮油、分散油及溶解油的除去,有机物的含量从70~80ppm,降至2~3ppm以下。
提供一种从催化剂中回收钼、钒和其它加氢脱硫 金属的方法, 所述方法包括收集一种或多种含有至少一种金属 硫化物的催化剂; 在常压碱性浸提步骤中浸提催化剂; 将浸提浆 液分离成第一液体物流和第一固体; 在碱性加压浸提过程中浸 提第一固体; 将第二浸提浆液分离为第二液体物流和第二固体 收集第一和第二液体物流; 氧化合并的液体物流; 冷却氧化的液 体物流; 并调整所述氧化的液体物流的pH; 使冷却过的氧化的 液体物流与含有萃取剂的有机溶剂接触; 从有机相中汽提可溶 性金属物类; 调整含水相的pH值以便选择性地使至少一种金属 呈金属盐的形态沉淀; 和从含水相中分离金属盐。
提供了用于制备镍阴极的酸性含水电解质溶液,其包括镍离子和2,5-二甲基-3-己炔-2,5-二醇。该2,5-二甲基-3-己炔-2,5-二醇在该酸性含水电解质溶液中的量可以在约5ppm~约300ppm范围内。还提供了用于电解提取或电解精炼镍阴极的方法,其包括提供包括镍离子和2,5-二甲基-3-己炔-2,5-二醇的酸性含水电解质溶液;以及电解沉积镍以形成镍阴极。2,5-二甲基-3-己炔-2,5-二醇的添加导致在由电解提取或电解精炼制备的阴极表面上可能发生的条纹和其他缺陷的减少。
本发明涉及一种制备氧化铽的方法,特别涉及一种钆-铽Gd-Tb富集物制备超细高纯氧化铽的方法,所述方法步骤如下:(1)混合配料;(2)钆-铽Gd-Tb超声分馏萃取:得含有氯化铽TbCl3的富集液;(3)铽-镝Tb-Dy超声分馏萃取:得氯化铽TbCl3精制液;(4)吸附除杂;(5)固-液分离;(6)超声结晶沉淀:得碳酸铽Tb2(CO3)3结晶沉淀物;(7)固-液分离;(8)干燥、灼烧:获得Tb4O7含量≥99.99%,颗粒粒径为0.01-10.0μm超细高纯氧化铽产品。本发明的好处是:(1)采用超声分馏萃取,提高萃取分离速率;(2)采用超声结晶沉淀,颗粒粒径小,粒度分布均匀。
本发明涉及一种制备氧化镝的方法,特别涉及一种铽-镝Tb-Dy富集物制备超细高纯氧化镝的方法,所述方法步骤如下:(1)混合配料;(2)超声分馏萃取:得含有氯化镝DyCl3的富集液;(3)超声分馏萃取:得氯化镝DyCl3精制液;(4)除杂净化;(5)固-液分离;(6)盐酸溶解;(7)除杂分离;(8)固-液分离;(9)超声结晶沉淀:得碳酸镝结晶沉淀物;(10)固-液分离;(11)干燥、灼烧:得Dy2O3含量≥99.99%,颗粒粒径为0.01-10.0μm的超细高纯氧化镝产品。本发明的好处是:(1)采用超声分馏萃取,提高萃取分离速率;(2)采用超声结晶沉淀,颗粒粒径小,粒度分布均匀。
本发明涉及一种利用萃取反应制备含金属离子液体的方法,该方法利用胺类萃取剂萃取溶液中的金属离子,从而得到含金属的铵类离子液体。同时实现了金属离子的清洁分离和功能化离子液体的直接制备。该方法制备的整个过程中没有使用有机溶剂,不会对环境造成危害。并且制备的含金属离子液体可以作为酸性气体的吸收剂和烷基反应的催化剂。该方法萃取后的负载有机相即为制备的含金属离子液体,因而该方法省略反萃金属离子的步骤,简化了工艺,成本低,能耗少,减少了反萃过程中酸带来的环境污染。
本发明提供一种盐酸法从氧化铜钴矿中提铜钴镍的方法,以氧化铜钴矿为原料,经过采矿—矿石制备—矿石浸出—分离—浸出渣洗涤—浸出母液沉铜—浸出母液再沉钴镍—浸出母液净化—再生盐酸(烧碱)回收—利用,提取铜和镍钴中间产品,回收并再生盐酸和烧碱循环利用,同时回收洗涤水循环使用,不外排任何废物,不污染环境。不仅浸出速度快,除杂能力强,铜钴镍浸出率、回收率高,对资源的适用范围较宽,同时形成不外排的闭路循环,能最大限度地保护环境,在单位金属投资小的情况下,其工艺技术及设备完全能满足规模化、产业化生产要求,本工艺流程简洁、能耗低、原料消耗小、成本低,矿物综合利用率较高,其经济和环保效益是现有技术所不及的。
一种用细菌浸出锌精矿沸腾焙烧烟灰中锌的方法,包括细菌培养、细菌浸锌、固液分离三个步骤,本发明采用氧化亚铁硫杆菌、氧化硫硫杆菌、氧化亚铁微螺菌、嗜热氧化亚铁钩端螺菌和硫化叶菌中的一种或多种的混合细菌,对含锌40%以上锌精矿沸腾焙烧烟灰进行细菌浸锌,锌浸出率可达95%以上,本发明工艺方法操作简单,环境友好,效益显着。
本发明涉及一种从含钼镍黑色页岩中分离钼镍的方法,属于冶金化工技术领域,其特征在于:将含钼镍黑色页岩破碎磨细后,在压力釜内用稀酸和氧化剂进行氧压浸出,过滤后得到含钼、镍浸出液和浸出渣;浸出液经萃取和不同反萃剂反萃后分别得到钼酸铵和硫酸镍溶液。本发明省去了传统流程中的焙烧工序,避免了SO2等烟气对环境的污染;通过氧压酸浸出,直接转化和溶解含钼镍黑色碳质页岩中的钼和镍生成硫酸钼酰((MoO2)SO4)和硫酸镍(NiSO4)进入溶液而富集,较好的实现了钼镍的分离提取,是一种强化转化的清洁生产技术,且其主体工艺不受矿物组成的变化而制约。
本发明公开了一种聚合物阴离子交换膜的制备方法。该方法包括聚合物的氯甲基化,季铵化和成膜的步骤。特征是采用金属锌或铝粉末和含氟有机酸作为混合催化剂对主链上含苯环、并且苯环之间有醚键相连的聚合物进行高效的氯甲基化接枝;然后通过气-液或液-液反应对氯甲基化聚合物进行季铵化,例如将三甲胺气体通入到氯甲基化聚合物溶液中进行季铵化反应;再涂铸成膜获得季铵化阴离子交换膜。本发明方法简便、高效,所得到的这种聚合物阴离子交换膜具有高的离子交换容量和高的化学与热稳定性,而且膜的机械性能优越。
本发明属于电子废弃物锂离子电池回收技术领域,更具体地,涉及一种回收退役锂离子电池正极材料中有价金属的方法。其为利用氧化剂和有机酸回收退役锂离子电池正极材料中金属的方法,在亚临界条件下利用氧化剂过硫酸盐或过氧化氢水溶液活化产生的自由基加速破坏退役锂离子电池正极材料的晶体结构,并结合有机酸的络合效应与还原剂促进有价金属转化为可溶态。本发明利用一种绿色安全的方法,以退役锂离子电池正极材料为原料,在亚临界条件下使用过硫酸盐活化产生的自由基破坏退役锂离子电池正极材料中的晶体结构,能够实现有价金属资源的高效率回收,并避免对环境造成二次污染,同时具有成本低、工艺简单,易于扩大生产,实现产业化的优点。
本发明公开了一种溶剂萃取回收镉的方法,其步骤为:a)首先将含镉渣尘用硫酸浸出;b)所得浸出液加入氯化铵生成镉氯络阴离子;c)所得萃前液与含胺类萃取剂的酸化有机相混合萃取;d)所得镉负载有机相洗涤;e)所得洗涤负载有机相以氨——氯化铵溶液作反萃剂进行反萃取;f)所得空载有机相加硫酸混合酸化转型;g)所得富镉液进行深度净化,通直流电电积产出阴极镉片和镉电积残液,所得阴极镉片熔铸得金属镉锭;h)所得贫镉液,部分排出供其他金属回收。本发明具有较高的选择性、直收率和成品合格率,利于资源综合利用和三废治理,能耗低、消耗低。
本发明公开了一种动力电池的真空裂解设备及其裂解方法,裂解设备包括筒体,还包括从上至下设置的:辊压装置、第一密封装置、裂解装置,第二密封装置、热解装置、第三密封装置。本发明的动力电池的真空裂解设备安装有第一、二、三密封装置,将裂解装置和热解装置隔离,并且能实现物料传输和气体隔离相互不干扰,避免无氧区和有氧区之间的串气;将电池裂解与热解相结合,利用裂解后排出的裂解气作为热解和裂解的燃料或预热热解装置,充分利用了资源。
本发明提供了一种中毒碳分子筛的再生方法,其包括如下步骤:S100:酸洗:将中毒碳分子筛置于盐酸溶液中充分浸泡;S200:水洗:将酸洗后的中毒碳分子筛用清水漂洗2~3遍;S300:溶剂清洗:将水洗后中毒碳分子筛置于有机溶剂中充分浸泡;S400:调孔:将中毒碳分子筛置于氮气环境中在600~750℃下进行调孔。本发明得到的碳分子筛性能和质量均较高,实现了碳分子筛的重复利用,减少了资源浪费,保护了环境,避免了环境污染。
本发明公开了一种回收废旧锂离子电池有价金属的方法,该方法先电池粉加入浓硫酸进行熟化浸出,再加水进行水浸,固液分离后将第一石墨渣加入稀硫酸进行酸浸,然后加入还原剂进行还原浸出,再加碱沉淀杂质,最后固液分离得到第二石墨渣和第二有价金属液。本发明利用浓硫酸的碳化作用,碳化分解电池粉中的有机物,解决有机物包覆电池粉活性物质和水浸、酸浸过程中由于有机物质引起的起泡、冒槽等问题;本发明的浸出与除杂同步进行,简化了废旧锂电池有价金属回收工艺,降低了生产成本。
本申请公开了烟气中二氧化碳捕集与基于工业固废的二氧化碳矿化耦合系统,包括:吸附反应装置,烟气输入吸附反应装置中并与内置于吸附反应装置中的吸附剂发生吸附反应,并生成第一碳酸盐产品;热分解装置,第一碳酸盐产品经热分解装置热分解处理后生成氧化物及二氧化碳;氧化物重新返回至吸附反应装置中循环反应;失活报废的氧化物被输送至工业固废矿化系统中参与反应;二氧化碳被输送至工业固废矿化系统中参与反应。本申请能够将烟气中CO2捕集和工业固废矿化系统耦合,将两种工艺耦合即实现了二氧化碳的捕集和利用,又实现了废物再利用,又能生产出高质量的化工产品,同时烟气CO2捕集产线也易与工业固废矿化系统的产线有机结合,降低了工艺成本。
本发明涉及一种使用高镁低钴溶液除镁生产钴溶液的方法,主要针对镁含量20‑50g/L,钴含量10‑30g/L的高镁低钴溶液,包括有机皂化、萃取、洗镁、反萃四个步骤,工艺流程短、加工成本低;同时,本发明能在萃取的过程中,既保证钴溶液中镁含量达标,又能保证其余杂质元素满足生产钴产品的要求,同时萃余液中除镁元素外其余杂质含量低。本发明实现了高镁低钴溶液中回收钴生产高附加值的钴溶液,同时可以产出低杂质的镁溶液副产品,达到了钴镁同时回收的目的。此外,本发明在反萃得到钴溶液之后还包括再生和水洗步骤,实现了对萃取有机的循环利用,节约成本。
本发明公开了一种废旧动力锂离子电池精细化拆解回收方法;其包括:(1)废旧锂电池拆解;(2)将步骤(1)中产出的电芯置进行电解液脱氟处理;(3)将步骤(2)中产出的脱氟电芯进行除磷处理;(4)将步骤(3)中产出的去磷后电芯进行负极材料剥离;(5)将步骤(4)中产出的负极剥离机中的正极片、铜箔和隔膜的混合物进行隔膜分离;(6)将步骤(5)中产出的负极材料和负极剥离液的混合液进行过滤处理;(7)将步骤(5)中产出正极片和铜箔的混合物进行溶铝处理;(8)将步骤(7)中产出的正极材料用洗涤塔进行洗涤、干燥处理,形成正极粉材料。本发明可以解决现有废旧锂电池回收工艺成本高、回收不环保、材料回收不精细的问题。
本发明公开了一种从含锡冶金渣中选择性浸出锡的方法,该方法是将含锡冶金渣粉末与包含有机羧酸在内的浸出剂进行浸出反应后,固液分离,得到含锡浸出液;该方法能够实现含锡冶金渣中锡的高效富集分离,锡的提取率高于95%,且对锡浸出选择性好,可处理含锡冶金渣种类广泛,对环境友好,操作简单生产成本,可用于工业化生产。
本发明涉及冶金技术领域,且公开了一种基于化学反应的粉末冶金铁粉搅拌装置,包括底座,所述底座的顶部固定连接有支架,所述支架的顶部固定连接有外箱,所述外箱的顶部设有输料口,所述外箱的左侧固定连接有第一电机,所述第一电机的输出端固定连接有第一输料绞龙,所述外箱的右侧固定连接有V型送料仓,所述V型送料仓的底部固定连接有搅拌箱。通过一级搅拌装置和二级搅拌装置,对物料进行了充分的搅拌混合,避免了人工搅拌费时费力且搅拌不够充分的缺点,除进出料口,其余装置皆为密闭设置,最大限度的减少了粉末状物料微粒在空气中进行漂浮,尽量避免工人因长期吸入金属微粒造成对身体的危害。
一种硫酸锰深度净化液自流式清污分流装置,所述浮筒中间设有浮筒内管,定位管穿过该浮筒内管,浮筒随液位的变化沿着定位管上下移动,定位管固定在定位管架上,限位器设在定位管下端,液位重锤通过滑轮系于浮筒上,输液软管内有弹簧,弹簧的上端系在浮筒的下沿,弹簧的下端与卷管器连接,在浮筒下沿的另一侧系有平衡吊篮,输液软管的上端通过固定销与浮筒连接,输液软管下端与固定输液管相连,输液软管的中间部分相对固定在卷管器内,放液阀与固定输液管连接。采用本发明能够减小溶液的电阻,降低电耗,延长清槽周期至15‑18天,有利于生产的量化管理。
本发明涉及电解镍的新液净化除杂设备技术领域,公开了一种电解镍净化除杂反应槽及其方法,所述净化除杂反应槽包括槽体、槽盖和导流装置;槽体下端设有底风管,槽体侧面设有进液口和出液口;槽盖用于封闭槽体上端开口,槽盖顶部设有通风口、氯气加入管、试剂加入口和检测口;氯气加入管深入槽体内腔三分之二深度以下,检测口处安装有pH/ORP测试仪;导流装置包括导流筒,导流筒竖向安装在槽体内腔,导流筒上端与出液口连通;其中,底风管、通风口、进液口、出液口、氯气加入管和试剂加入口上均设有自动调节阀门。本发明能够在大流量高杂质体系中进行高效除杂,并获得纯净的电解阴极液。
本发明公开了一种制备棉秆皮微晶纤维素/氧化石墨烯气凝胶纤维的方法,属于废弃生物质资源再利用技术领域和减轻染料污染净化水资源环保领域。本发明以棉秆皮微晶纤维素为原料,采用1‑丁基2‑甲基咪唑氯盐和二甲基亚砜溶解体系进行溶解,将氧化石墨烯作为填料进行复合,使用湿法纺丝技术进行纺丝,在利用冷冻干燥技术制备出棉秆皮微晶纤维素/氧化石墨烯气凝胶纤维。气凝胶纤维对亚甲基蓝的吸附量为40.3‑104.8mg/g,断裂强度为0.23‑0.79cN/tex。本发明使用的原料来源广泛廉价,溶剂绿色无污染,制备过程简单方便,制备出的气凝胶纤维对水溶液中的亚甲基蓝具有较好的吸附能力。
本发明属于有色金属富集与分离处理技术领域,更具体地,涉及一种壳聚糖‑阴离子树脂凝胶材料、其制备和应用。本发明通过将壳聚糖与阴离子树脂粉末的分散液混合均匀,使壳聚糖溶解于该分散液中,得到混合分散液,然后将该混合分散液通过挤出、喷射或滴加至无机磷酸盐溶液中,利用无机磷酸盐与壳聚糖发生离子交联形成凝胶材料,且阴离子树脂粉末被包覆在壳聚糖树脂凝胶内部的空间结构中,制得壳聚糖包裹阴离子树脂粉末的凝胶颗粒。本发明制得的壳聚糖树脂凝胶颗粒材料能在常温常压下,在pH为3‑12范围内,对废水Re的吸附率均高于70%,最大吸附容量可接近400mg/g。且pH在12以上能较好的分离铼钼两种有价金属。
湿法磷酸生产方法包括在包含硫酸的浆料中浸提含磷酸盐的矿石,从而形成磷酸和硫酸钙晶体;并且将该磷酸与这些硫酸钙晶体分离;其中,向该浆料中添加消泡剂和聚(羧酸)或其盐,该聚(羧酸)或其盐具有小于1,000,000克/摩尔(g/mol)的重均分子量。该聚(羧酸)可以是聚(丙烯酸)或其盐,并且该消泡剂可以是二烷基磺基琥珀酸盐和脂肪族醇或脂肪酸酯。该方法通过以下中的任一种来增强湿法磷酸生产中磷酸与硫酸钙晶体的分离:增加硫酸钙晶体的体积平均粒度、增加过滤速率和减少泡沫形成。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!