本发明公开了一种连测试矿浆浓度检测装置,包括浆泵、第二法兰连接管、水泵和往复带动装置,所述浆泵一端与连接管安装连接,且浆泵上方与第一法兰连接管一端安装连接,所述第二法兰连接管内部安装有控制阀,且第二法兰连接管通过第一法兰连接管与浆泵安装连接,同时第二法兰连接管通过浆泵和安装块安装于安装座上方一侧,所述水泵上方与输送管一端安装连接,且水泵通过水桶安装于安装座上方另一侧,同时水泵通过输送管与喷淋清洗装置安装连接,该一种连测试矿浆浓度检测装置,设置有安装块,通过安装块不仅对浆泵起到固定安装效果,并且通过安装块从而对浆泵起到提高浆泵与安装座之间的相对安装距离效果。
公开了一种氧化和水热分解金属氯化物从而将诸如铁和铝之类的有害元素与诸如铜和镍之类的有价值金属高效和有效地分离的方法。首先,在电解反应器中进行氧化,特别是对铁的氧化,其中二价铁被氧化成三价铁。在第二个实施方案中,在水热分解反应器中处理氧化的溶液,其中可分解的三价金属氯化物形成氧化物,而二价金属氯化物形成碱性氯化物。后者可溶于稀盐酸中,并可从水热固体中选择性地重新溶解,从而实现清洁的分离。盐酸从水热反应器中回收。
本发明公开了一种沉钒尾液蒸发出的副产盐提纯制备硫酸钠的方法,包括以下步骤:S1、将沉钒尾液蒸发出的副产盐破碎后过筛,去除部分杂质,然后将过筛后的副产盐投入饱和硫酸钠溶液中,升温至50-70℃搅拌洗涤;S2、搅拌洗涤后,静置分层,取上层液,然后再进行固液分离,合并分离后的液体和上层液,经过滤后返回原洗涤工序中继续使用,如此重复洗涤多次,得到洗涤后的固体,固体经干燥后即得。本发明利用纯物理洗涤的方法生产制备高纯度工业级的硫酸钠,其废水产生量少,能耗低,获得的硫酸钠产品的纯度在99.5wt%以上,铵离子含量低于0.064wt%,提高了硫酸钠产品的附加值,具有工艺简单、流程短、能耗低以及对环境友好的特点,具有实际应用推广前景。
本发明公开了一种从废镍氢电池中回收有价金属的方法,所述方法包括将废镍氢电池拆解粉料进行第一浸出、固液分离,得到第一滤液和第一滤渣。随后对第一滤液依次进行除铁铝、第一萃取、第二萃取、洗涤和反萃过程;对第一滤渣依次进行第二浸出、第三浸出和第三萃取过程,回收滤渣中稀土元素。其中,第二萃取过程中使用羧酸类萃取剂,分离废镍氢电池浸出溶液中的镍钴锰和镁元素,从而回收镍钴锰;本发明所述方法操作简单,对金属元素分离回收效果好,所采用的羧酸类萃取剂水溶性低,对环境友好,降低了杂质处理成本和后期废水处理成本。
本发明涉及一种烷基膦酸的制备方法,包括:将由通式(I)所示的烷基膦酸作为催化剂加入作为原料的由通式(II)所示的烷基膦酸酯中,催化剂的加入量为原料的重量的1wt%~15wt%;在150℃~200℃,缓慢且持续地加入蒸馏水,进行自催化水解反应;产生的低级醇和被汽化的水经由冷凝器冷却后收集;实时监测作为原料的烷基膦酸酯的特征峰,来判断水解反应进行的程度;待烷基膦酸酯的特征峰消失,停止加入蒸馏水;真空脱除反应混合物中残留的水分和低级醇,得到由通式(I)所示的烷基膦酸。本发明的制备方法仅以少量目标烷基膦酸为催化剂,制备工艺简单,对设备要求低,不产生酸性废弃物,具有显著的环保特征,且水解反应彻底,所得烷基膦酸产物纯度高。
描述了用于从来源于废旧锂离子电池并且包含金属、液体、酸和其他组分的组合体提取此类金属的方法。
本发明公开了一种整体自动进槽插板机的归正组件的柔性推动装置,包括进槽机架和位于进槽机架上的两组移动机构,两组移动机构分别位于进槽机架的两端部处,所述移动机构包括连接在进槽机架下方的竖直布置的一号滑轨,所述一号滑轨上设有一号滑块,移动机构还包括位于进槽机架上的拉动一号滑块的一号气缸,一号气缸的活塞杆端部和一号滑块通过拉绳连接,一号滑块上设有归正组件推动机构。本发明中插板时一号气缸推出,将归正组件置于电解槽上方,后期进槽机架继续向下运行的过程中,一号气缸和一号滑块由于是通过钢丝绳连接,是柔性连接,不会将归正组件继续向下推动,不会损坏电解槽,也不会损坏归正组件。
本发明公开了一种强碱性阴离子交换树脂非离子交换吸附强酸的方法,包括如下:S1,离子交换,阻滞吸附:将含盐废酸通过离子交换树脂柱,游离酸进入并被阻滞吸附在树脂粒内部,盐类不能进入树脂粒内部而先流出柱体;S2,循环回收酸:再通水淋洗脱附树脂粒内的游离酸流出成回收酸,完成一循环,周而复始,完成游离酸与盐之间分离;S3,色谱分离:以连续色谱分离理论,盐为萃余液,酸为反萃液,分别自流动相方向的进料前方和后方流出。本发明强碱性阴离子交换树脂非离子交换吸附强酸的方法,是一种特殊的处理技术,只吸附酸而不吸附相应的金属盐,从而实现酸和盐之间分离的技术,广泛应用于金属矿业、冶金、电镀和金属表面处理等行业的废酸回收。
一种废旧磷酸铁锂电池正极片的真空分离方法,将废旧磷酸铁锂电池正极片剪切成松散状,再将松散状的废极片放入真空炉中进行真空焙烧,温度为350‑450℃时保温1‑6小时,然后将煅烧后的废极片分批放入振动筛,同时加入不同粒径的钢球,进行振打筛分,振动筛上面得到铝箔,下面为磷酸铁锂废粉。本发明减少了振打筛分过程中铝箔碎裂而进入磷酸铁锂废粉中,同时使锂得到活化,为磷酸铁锂火法直接修复回收打下了基础。
本发明总体上涉及在金属氰化后对金属氰化物复合物进行生物还原的方法以及对氰化物进行生物水解的方法。更特定地,本发明允许将要容纳在合成宿主(如生氰的紫色色杆菌)内的整合的合成浸滤剂生物系统工程化,以用于电子废物的有效的贵金属回收和有毒金属修复;在所述合成宿主的设计和工程化中具有多达四个主要组分/模块:1)合成生氰作用;2)合成金属回收;3)合成氰解;以及4)用于浸滤剂生物学的合成回路。还公开能够将离子金属还原为呈纳米颗粒的离子金属(如金或银)的细菌,其包含汞(ll)还原酶(MerA),所述酶在以下位置包含取代突变:V317、Y441、C464、A323D、A414E、G415I、E416C、L417I、I418D或A422N。还公开使用以异源氰化氢合酶基因和异源3‑磷酸甘油酸脱氢酶突变基因转化的基因工程化细菌进行合成氰化物浸滤剂产生的方法。还公开使用以异源腈水解酶基因转化的基因工程化细菌进行合成氰解的。
本发明涉及一种废旧磷酸铁锂电池回收除铝的方法,步骤包括:对所述废旧磷酸铁锂电池的正极材料粉末依次进行除铝反应、固液分离、i次洗涤以及浸出处理;其中,第j次洗涤采用前一批次中第j+1次洗涤后所得到的第j+1洗液,第i次洗涤采用纯水;其中,2≤i≤6,1≤j
公开了一种用于回收电池的方法,包括以下步骤:a)溶解电池废料,例如电极,其包括锂和选自钴和锰的金属,从而形成含有锂离子和金属离子的待处理溶液;b)向待处理溶液添加过氧单硫酸盐,当金属为钴时,将待处理溶液的pH值调节在1至4之间,或者当金属为锰时,将pH值调节在0.1至2.5之间,从而使金属离子以金属氧氢氧化物的形式选择性沉淀;以及c)从待处理溶液中分离锂离子。有利地,该溶液还包括镍离子。
本发明公开了一种从负载有机相中脱除水相的装置,包括圆柱形的本体,所述本体内部从下往上依次设置有进料区、PVC波纹板、空心球以及冲洗区,所述本体上方设置有圆柱形的分离区,所述分离区的直径大于本体的直径。负载有机相在本体内由底部向上流动,经过PVC波纹板以及空心球介质层的处理,负载有机相中的因“油包水”现象产生的微小水相液滴得到聚集。聚集的水相向下沉降至底部,从水相出口进入水相槽,水相返回萃取段前料液;有机相向上运行至分离区,从溢流口进入有机储槽,实现了水相从负载有机相中脱除的目的。
本发明公开了一种稳定化处理砷碱渣制备臭葱石的固砷方法,包括以下步骤:1)将砷碱渣进行氧化浸出,过滤得到含碳酸钠和砷酸钠的浸出液及锑酸钠沉淀;浸出液浓缩后通入CO2脱碱,过滤得到脱碱浸出液及碳酸氢钠晶体;2)向步骤1)所得的脱碱浸出液中加入酸控制其pH为1.0~2.5得到富砷溶液;3)按铁砷摩尔比1.0~3.0向步骤2)所得的含砷溶液加入亚铁盐和H2O2的混合溶液,控制其pH为1.2~2.0,75~95℃反应即得到臭葱石晶体。本发明处理砷碱渣得到了具有双锥八面体形貌、颗粒均匀的臭葱石晶体,砷浸出浓度低于GB5085.3‑2007《危险废物鉴别标准‑浸出毒性鉴别》规定,可长期安全储存。
本发明涉及稀散金属综合回收技术领域,特别涉及一种用N235萃取剂生产锗精矿的方法,首先用N235萃取剂从含锗酸性液中萃取有机锗酸,获得负载锗的有机相;然后再用对应的有机酸稀释液洗涤负载有机相,用氢氧化钠反萃净化有机相,获得含锗碱反萃液,并循环至其中含锗达到20g/L以上;然后将该反萃液进行水解沉淀锗精矿;水解沉淀过滤液进行苛化处理,获得有机酸钙沉淀和氢氧化钠再生液返回使用,再用硫酸浸出有机酸钙,获得有机酸浸出液返回使用。既确保锗的有机萃取率,又降低氢氧化钠的消耗量,提高锗精矿品位,还再生回收氢氧化钠和锗的有机络合剂,同时减少废渣废水环境治理成本。
一种化学沉淀硫化镍物料提取镍的方法。在弱碱性体系中,硫化镍物料浆体中的硫化镍与次氯酸钠反应生成氯化镍;而硫化镍物料浆体中的硫酸镍生成的氢氧化镍与次氯酸钠反应生成氢氧化高镍,氢氧化高镍具有强氧化性能加速硫化镍的氧化效果;碱性氧化完成后矿浆经硫酸或盐酸酸溶,将未反应完全的硫化物料与氢氧化高镍发生反应浸出镍;浸出液经化学和萃取除杂后得到高纯硫酸镍溶液,除油后通过蒸发结晶可得到硫酸镍产品或送往电解镍。本发明方法无二氧化硫和硫化氢气体等有害气体生成,更有利于环保和生产操作,且低成本、低污染、综合回收利用效果好。
本发明公开了一种从铜冶炼烟尘回收铅的工艺方法,采用的主要工艺流程为:炼铜烟尘依次经过水‑浆化浸出、鼓风炉熔炼、铅合金火法精炼、铅合金电解、碱法熔化提取铅,最后制得铅锭,此工艺采用废弃的铜冶炼的烟尘为原料具有提资源利用率的优点,在冶炼的过程中,采用循环系统,实现了资源的综合浪费,具有节约资源,采用碱法熔化提取铅的方法克服了传统方法后续处理的复杂程序,降低提取成本,提高铅提取的效率。
本发明公开了一种废旧锂离子电池正极材料中预还原优溶提锂的方法,包括如下步骤:(1)将正极材料调浆后加入还原剂预还原,再逐渐加入稀酸浸出,经固液分离得到一次浸出液和一次浸出渣,所述一次浸出液的pH为5.5~7.0;(2)一次浸出液再用碱液调节pH至10~12,经固液分离得到富锂液和二次浸出渣。本发明通过改变酸和还原剂的加入方式,并严格控稀酸的浓度和添加速度,使得正极材料中的锂优溶浸出,实现锂的前端回收,避免了镍钴锰等有价金属分离过程中的锂损失,提升了锂的回收率。
本发明提供了一种强化废旧锂离子电池金属回收的方法,该方法先将废旧锂离子电池焙烧、破碎、分选得到正极粉料,再将正极粉料用于湿法浸出,浸出过程中通过高能球磨实现机械化学活化,浸出的同时执行机械活化,所得到的浸出液可进一步的用于有价金属元素的回收;本发明流程简单、可操作性强,在机械力与化学活化协同作用下,可大幅度缩短正极粉料的浸出时间,提高金属元素的浸出率,降低成本,具有良好的市场前景。
本发明的方法用于加工硅酸铁岩石。从硅酸铁岩石中至少部分地除去至少一种成分。因而从硅酸铁岩石中除去至少一种不同于铁的成分。处理过的硅酸铁岩石用于生产生铁或者钢。用于利用所述处理过的硅酸铁的装置设计为生产生铁或者钢的装置。
本发明公开了一种锌湿法冶炼浸出液的净化方法,特别适用于高酸浸出‑黄钾(铵)铁矾法除铁后的硫酸锌溶液或氧化锌烟尘硫酸浸出液,本发明先利用氧化溶液中亚铁或补充铁源以保证溶液三价铁的浓度,再通过向反应釜中添加晶种‑纤铁矿(γ‑FeOOH)浆料,而后缓慢加入待除杂的硫酸锌浸出液,同时加入中和剂,并控制反应pH值和温度,使溶液中的三价铁、砷、锗和氟等离子大部分或者全部进入沉淀,所得的沉淀渣易于过滤,洗涤。本发明工艺过程简单,成本低,不仅可以实现了对锌电解过程有害杂质(铁、砷、氟和锗等)的去除,同时也实现锗的有效富集,适用于工业化应用。
一种从低品位红土镍矿中回收镍、钴、铁、硅和镁的新方法。洗选分级;向高硅镁矿浆中加入足够的浓硫酸反应,固液分离得到常压浸出渣和常压浸出液;将常压浸出液和低硅镁高铁矿浆按比例加入管道反应器中,加压浸出;固液分离;加压浸出滤液用氧化镁纯化和沉淀、过滤,得到氢氧化镍(钴);对沉镍后液蒸发结晶到的七水硫酸镁;加压浸出渣洗涤烘干得铁精粉;常压浸出渣经筛分得二氧化硅产品和建筑砂。本方法对红土矿的适应范围广;镍钴浸出率高;常压浸出设备小、时间短、效率高;加压浸出为中低压管道反应器,避免了高压釜设备昂贵、易结垢的缺点;硫酸消耗很低;矿石的主要成分铁、镁和部分硅能经济有效的回收;废渣量少且能有效利用。
本发明涉及固废协同处置再利用技术,特别涉及废石膏、铅玻璃与铅膏协同处置制备铅精矿的方法,属于环境保护及资源再利用领域。该方法采用废石膏、铅玻璃和铅膏为主要原料,添加煤粉和粘接剂,通过混合球磨、压块、烘干和转化等工序得到人造铅精。制备得到的人造铅精矿满足四级及以上铅精矿标准(YST?319-2007)。本方法旨在实现废石膏、铅玻璃危险废物的再利用,制备得到的人造铅精矿满足现有铅冶炼生产要求,达到废物再利用及协同处置的目的。同时,制备的人造铅精矿含有冶炼所需造渣剂的CaO、SiO2成分,可节约部分造渣剂。本方法变废为宝,工艺简单,成本低廉,解决了废石膏和铅玻璃等大宗危险废物的堆存问题。
采用一步法除去硫酸锌溶液中钴、锰杂质的方法,其具体步骤如下:将硫酸锌溶液加入反应罐中,升温至75-80℃,加入强氧化剂过硫酸铵,然后加入双飞粉调节硫酸锌溶液中的PH值到4.0~4.5,通过过硫酸铵氧化硫酸锌溶液中二价锰离子和二价钴离子,反应时间为50~60min,使锰由二价变成四价以二氧化锰形式分离,二价钴离子被氧化成三价,由于Co3+十分不稳定极易水解沉淀而从硫酸锌溶液中除去,然后再加入微量强氧化剂高锰酸钾,反应时间为20~30min,进一步除去溶液中剩余的钴、锰离子,最后进行固液分离,获得除去钴离子和锰离子的硫酸锌溶液及含钴滤渣。
本发明公开了一种具有一多价阳离子选择性分离功能的阳离子交换膜的制备方法,其特征在于:以酸性聚合物及碱性单体为原料,使酸性聚合物的酸性离子交换基团部分或者完全“酸碱对”化,即得具有一多价阳离子选择性分离功能的阳离子交换膜。本发明利用酸性聚合物与碱性单体之间可形成“酸碱对”的作用,使得酸性离子交换基团部分或者完全“酸碱对”化,从而在膜内构筑了一个只能传输质子的通道,实现一多价阳离子的分离。
本发明公开了一种协同萃取剂及其从酸性含镍溶液中选择性萃取镍的方法;协同萃取剂为萘磺酸或萘磺酸盐与吡啶羧酸酯的复配物;所述的方法是用该协同萃取剂从酸性含镍水溶液中选择性萃取镍离子,负载有机相采用无机酸进行反萃取获得高纯度的含镍溶液,实现镍离子与铁离子、铝离子、锰离子、镁离子、钙离子和铬离子等杂质离子的有效分离,该方法镍离子回收率高,镍离子与杂质分离效果好,流程短,易于实现工业化。
一种表面陶瓷化栅栏型阳极板上阳极泥的去除方法,将表面覆着有二氧化锰阳极泥的表面陶瓷化栅栏型阳极板作阴极置于酸性电解液中,采用恒压电解法进行电解;电解槽底部采用脉动搅拌压缩空气使电解液来回摆动,使电极表面受到流体均匀冲洗。本发明可有效去除栅栏型阳极板上阳极泥,消除棒与棒之间间隙的堵塞,降低界面电阻,并恢复阳极板导电陶瓷膜的特性,保持溶液的流动性从而发挥栅栏型阳极的优势,有效解决阳极泥清理难的问题。
一种稀土萃取分离过程组分含量区间控制方法,所述方法针对稀土萃取分离过程各流量/各组分含量过程控制特点,建立稀土萃取过程回声状态网络模型;提出广义预测控制的稀土萃取分离多组分含量的区间控制方法,实现稀土萃取分离多组分含量的区间控制。传统方法采用萃取过程平衡状态下的软测量模型即静态模型,难以实现萃取过程组分含量在线预测以及难以建立精确的控制模型,从而影响稀土组分含量跟踪控制的效果。本发明控制方法,根据区间控制策略进行调整,优化计算,得到稀土萃取过程的准确控制量,使稀土萃取过程组分含量满足区间控制要求,保证了两端出口产品的质量。本发明适用于稀土萃取过程建模和优化控制。
本发明公开了一种低品位氧化铜矿堆浸滴淋工艺,包括以下步骤:预先筛分;筛上物料破碎;筑堆;铺设滴淋管道;制备稀硫酸;滴淋作业:将稀硫酸均匀滴淋在矿堆表层;富液回收:铜矿物中的铜以离子的形式存在于滴淋液中,并在矿堆下游的收集池中汇集,汇集后的富液通过输送泵泵送到富液池;萃取电积:富液通过萃取电积装置进行萃取和电积,得到铜金属;本发明采用滴淋方法对原铜矿石进行堆浸,酸溶液直接作用于矿石表面,通过渗析扩散,矿堆表面不会形成积水层,彻底消除矿堆板结及堆内溶液偏析现象,入渗速度快,而且酸溶液能够与铜金属充分接触,这对铜金属离子的析出十分有利。
本发明一种从砂岩型铀矿地浸采铀工艺贫树脂中回收伴生铼资源的方法,将砂岩型铀矿加入到含氧化剂的硫酸溶液中,用阴离子交换树脂对浸出液中的铀铼吸附,待树脂饱和后采用硝酸铵溶液解吸树脂中铀,贫树脂转型后重新返回吸附工艺,将贫树脂中的铀、铼共同解吸下来,将有机相中的铼反萃,获得高浓的铼溶液,获得铼酸钾产品。本发明工艺流程简单,易于大规模生产,回收贫树脂中吸附的铼资源,产品纯度高,贫树脂中铼总回收率高达95%以上,所用试剂环境友好。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!