本发明公开了一种贵金属二次资源高效富集的方法。该工艺是将贵金属二次资源物料与铜捕集剂、还原剂、造渣剂、粘结剂、水分在球磨机中进行充分润磨,混匀后采用成球机制成球团,经烘干,获得复合球团;待中频炉熔化废铜,分批次往中频炉中加入复合球团,混合熔炼一段时间后,捞出熔炼渣,铜水倒入浇注模中形成铜阳极板;采用电解方法获得阴极铜,贵金属进入阳极泥中,电解残极返回熔炼浇注阳极板再重新电解;采用加压酸浸阳极泥,经过滤和洗涤,获得贵金属精矿,实现了贵金属富集。此方法过程简单、原料适应性强、高效、富集比高、环保、成本低,易产业化。
本发明公开了一种从砂岩型铀矿地浸采铀工艺贫树脂中回收伴生铼资源的方法,将砂岩型铀矿加入到含氧化剂的硫酸溶液中,在一定温度下,震荡浸泡一定时间后,用阴离子交换树脂对浸出液中的铀铼吸附,待树脂饱和后采用硝酸铵溶液解吸树脂中铀,贫树脂转型后重新返回吸附工艺,解吸的铀浓缩液采用氢氧化钠沉淀、将树脂中的铼解吸下来,获得浓缩的铼酸铵溶液,经重结晶后获得铼酸铵产品。本发明工艺流程简单,易于大规模生产;产品纯度高,浸出液中铼总回收率高达80%以上,所用试剂环境友好,具有明显的社会效益和经济效益。
本发明公开了一种铜镍渣的综合回收有价金属的方法,该方法是以铜镍渣为原料,先通过分步浓差浸出方法高效浸出铁,浸出渣通过浮选富集制备铜钴镍混合精矿;浸出液通过萃取方法选择性萃取出铁,制备氧化铁红,或者将浸出液通过沉淀法制备精铁粉和水玻璃等产品;该方法以低成本制备出高品位的铜钴镍混合精矿、铁精粉、高纯度的氧化铁红及高模数的水玻璃等产品;该方法环保,易操作,易连续化工业生产。
本发明公开了一种去除工业硅硼杂质的方法,属于光伏领域。首先,将工业硅粉碎成粒度为150~200目的粉末;按质量比1:1~3:1将精炼剂与工业硅混合均匀并装入高纯石墨坩埚中;将装完料后的石墨坩埚置于通有氩气保护的高频感应炉中进行逐步加热升温;待温度升高至1450~1800℃时,保温2~3h;精炼完成后缓慢冷却至室温,即获得精炼硅,采用氯化物去除工业硅中杂质硼的方法,突破了目前完全采用氧化物除硼的工艺和思路,精炼后工业硅中的硼含量最低可降至0.77ppmw,且本方法操作简单,实用性强。
一种红土镍矿的热压转化法。本发明涉及一种红土镍矿矿物分离的预处理方法。本发明的方法是将红土镍矿磨细后与硫化剂混合,然后将混合物与水调浆后加入到加压釜中,在硫化剂可发生歧化反应的温度和压力条件下加温、加压反应,与镍、铁有价金属元素生成单一硫化物或硫酸盐,再采用常规硫化镍矿选矿工艺浮选转化产物,得到硫化镍精矿和铁精矿。本发明具有工艺流程简单、能耗低、有价金属与脉石矿物易分离、有价金属集中的特点,可适应处理不同品位的红土镍矿资源,能综合利用红土镍矿中的镍和铁,有助于解决我国铁矿资源紧缺和镍资源奇缺的状况。
本发明涉及一种氨-钙复合皂化剂的制备及连续皂化萃取的方法。该方法将铵盐溶液与石灰混合,制备氨-钙复合溶液,过滤或澄清后,得到氨-钙复合清液,将清液和有机相进行连续皂化,在1-10级萃取槽内以钙盐溶液对负载有机相进行逆流洗涤脱铵,将皂化后的有机相与待萃取溶液混合进行萃取分离和反萃取。本发明使用易得且廉价的石灰为原料,降低了萃取分离过程的皂化成本。采用澄清溶液进行皂化,消除了对于石灰原料的苛刻要求,缩短了皂化反应的混合时间,减小了有机相的损失或再处理,便于在连续萃取分离过程中使用。所有钙、铵离子均回收利用,皂化、萃取过程不产生氨氮废水,可以消除氨氮废水对环境的污染,节省了大量三废处理费用。
本发明提供了一种硫化物矿全湿法浸出方法,硫化物矿浸出过程是将硫化物矿粉与添加剂混合,加水,在温度为10~150℃反应,并控制反应终点酸度pH为0~14,加氧化剂氧化。其中,硫化物矿占20~98%,添加剂占0.001~30%,水占1~80%。硫化物矿为铜的硫化物、镍的硫化物、钴的硫化物、锌的硫化物等。添加剂为铜的水溶性化合物、铅的水溶性化合物、钴的水溶性化合物,石墨、活性炭、碳粉和碳黑。氧化剂为空气、氧气、双氧水、氯化铁、硝酸、氯气、氯酸盐、高氯酸盐、次氯酸盐。本发明的优点在于:大幅度提高浸出速度。
本发明为一种难浸金矿石加压氧化预处理工艺及设备,工艺包括矿石粉碎,加水制浆,加酸或碱,氧化、氰化等步骤,其特点为矿石粒度小于0.074毫米占90%以上,矿浆液固比为1.0—5.0,氧化剂为空气,压力为0.5—1.8MPa,温度70—150℃,反应时间为1—10小时,其设备为硝式压力釜。本发明效果好,节省资金,金矿浸出率可达90%左右,设备操作安全、节省能源。
一种从电子废弃物中直接电解回收金属的方法,属于电子废弃物回收处理技术领域。首先将富含金属的电子废弃物置于硝酸池中将金属溶解,未溶金属在王水溶液中进行溶解,溶解产生的废气通过吸收塔回收再利用。溶液过滤得到富含金属离子溶液,并用NaOH溶液调节溶液的pH值为6~8。将富含金属离子溶液通过给料系统传送至电解槽中,然后通入直流电进行电解。电解电动势为1.0~3.0v,电流密度为200~1000A/m2,电解温度为20~60℃。解后取出阴极上粉末状或海绵状的金属合金,通过过滤器和干燥器得到最终的多合金的金属粉末。优点在于,投资少、工艺简单、流程短、污染小、金属回收率高、回收成本低,适于工业化连续生产。
本发明是一种钨基高比重合金废料中钨、镍、铁综合利用的方法,其特征在于,对于W-Ni-Fe高比重合金废料,用无机酸与其在适当的温度下反应,使高比重合金中的镍、铁优先被溶解到溶液中,而钨则不被溶解;液固分离后所得到的多孔金属钨屑经去离子水洗涤后干燥,经干式球磨及筛分后,得可用于硬质合金生产的钨粉;然后向含Ni2+、Fe2+的滤液中加入碳酸钠,得碳酸镍和氢氧化亚铁沉淀渣;然后用氨水优先将沉淀渣中的镍溶解至溶液中,而大部分铁仍保留于渣中。所得镍溶液经蒸发浓缩后得碳酸镍产品,或将碳酸镍煅烧得氧化镍,再用氢气还原炉还原成金属镍粉。该方法工艺简单,设备简单投资少,易于实施,成本低。
本发明公开了一种具有单价选择分离功能的阳离子交换膜制备方法,该方法首先通过内嵌式浸涂将壳聚糖和/或其叠氮化衍生物溶液附着于经粗糙化处理后的常规阳离子交换膜表面;避光沥干后,壳聚糖叠氮化衍生物还需要经紫外光辐照引发氮烯的键插入反应,完成壳聚糖在基膜表面的共价键固定;最后,以交联处理和/或胺化处理来实现对功能层基体致密度、荷电密度及其在基膜表面固着作用等的调节,从而在常规阳离子交换膜表面形成以共价键固定的致密而均匀的荷正电薄层。系列电渗析实验表明,分离过程中借助功能层的孔径筛分作用及其与不同价态阳离子之间的静电作用差异而有效地实现了对一、多价阳离子的选择性分离。
本发明公开了一种硫化锌精矿的处理方法,包括如下步骤:(a)将硫化锌精矿与浓度为120-170g/L的硫酸溶液混合调浆,并供给到第一加压釜内;(b))将所述硫化锌精矿进行酸浸以获得浸出液和浸出渣;(c)将所述浸出液供给到第二加压釜中,加入中和剂和除铁剂同时通入纯氧,并反应第二预定时间以进行中和与除铁,并获得中和液和中和渣;以及(d)对第二浸出液采用湿法炼锌工艺进行处理以获得金属锌。由此,通过使用硫化锌精矿作为中和剂,实现了真正意义上的全湿法炼锌,并将氧压浸出、中和与除铁合并在一个反应釜内进行,简化了工艺流程,且通过高温、加压使反应过程强化,进一步提高了锌的浸出率。
本发明公开了一种微波热解处理废旧锂电池的方法,包括以下步骤:将去除外壳的放电彻底的废旧锂电池放入工业微波炉中进行热解,然后对产生的油气和固体分别进行后处理;其中,热解温度为400℃-900℃。本发明处理工艺简单、能源利用率高、产生废物少、占地面积小、处理成本低、时间短。此外,该处理方法环境友好,不产生“三废”,基本能够实现废物的近零排放,可以实现废旧锂电池的能源化和资源化回收利用,具有很好的发展前景。
本发明公开了一种氨基改性的接枝共聚物、制备方法及其应用。该制备方法,其包括下述步骤:溶剂中,将含环氧基的乙烯基类单体的接枝共聚物与胺类化合物进行环氧开环反应即可。本发明还公开了一种用所述氨基改性的接枝共聚物提取贵金属和/或重金属的方法,其包括下述步骤:将氨基改性的接枝共聚物与含有贵金属和/或重金属的水体混合,搅拌,即可。本发明的氨基改性的接枝共聚物可吸附溶液中的贵金属,并且相对于现有技术中的吸附材料具有更高的吸附速率和使用寿命,利于回收。
一种用于精制包含固体的过程流体的装置,所述装置包括一个容器,该容器具有一个底部和一个侧壁以限定一个内部容积,该内部容积用于容纳所述过程流体,并且用于允许对所述流体中的固体进行重力沉降,由此朝向所述内部容积的顶部生成经精制的流体,以及朝向所述内部容积的底部生成浆体,所述装置还包括布置在所述内部容积内的固体移置元件,用于引导所述侧壁的近处或所述底部的近处中的已沉降的固体和/或正在沉降的固体朝向从所述浆体出口提取所述浆体的流动路径。一个包括上述精制装置的处理车间,以及一种用于精制过程流体的方法。
本发明涉及一种从废弃荧光粉中分离提纯荧光级氧化钇和氧化铕的方法,包括以下步骤:首先通过除杂得到含Y2O3和Eu2O3混合稀土,再用酸溶液溶解,配制成稀土料液,用碱溶剂皂化后的萃取体系进行萃取,得到萃余液、洗液和反萃液;加入草酸溶液,过滤,所得滤渣灼烧,得到荧光级的氧化钇,富钇稀土和氧化铕。本发明的有益效果在于:试剂来源广泛,价格便宜,易得,而且此法流程简单,可以大大缩短环烷酸的萃取流程;在本发明中,萃取前得三次沉淀除杂,已经除去大部分的杂质,只有少量的铝和硅,不会引起环烷酸萃取体系产生乳化现象,比较好的解决了环烷酸萃取容易受高价金属离子影响而产生的乳化现象。
本发明涉及一种活性炭脱除湿法炼锌中上清溶液中有机物的方法,通过在净化过程中的后两段净化工序中,分别加入两种不同类型的颗粒活性炭:首次加入的颗粒活性炭,其亚甲基蓝吸附值不低于180mg/g,粒度不小于355μm,机械耐磨强度不低于50%;第二次加入的颗粒活性炭,其亚甲基蓝吸附值不低于120mg/g,粒度为1.25~3.20mm,机械耐磨强度不低于98%,首次加入颗粒活性炭净化后溶液中有机物的含量降至70mg/L以下;第二次加入颗粒活性炭净化后溶液中有机物的含量降至45mg/L以下。本发明的优势在于无需增加额外设备、无需改变现有湿法炼锌流程,具有成本低、操作简便等优势。
本发明公开了一种半导体芯片废料回收的方法,涉及回收技术领域。本发明提供了一种半导体芯片废料回收的方法,包括以下步骤:(1)将半导体芯片废料预处理,得到半导体芯片废料粉末;(2)将半导体芯片废料粉末和酸混合,得到混合物;将氧化剂滴加到所述混合物中进行反应,过滤得到滤渣和滤液;所述氧化剂的滴加速度为0.5‑1mL/min;(3)将所述滤渣和滤液分别处理,完成半导体芯片废料的回收。本发明提供的一种半导体芯片废料回收的方法,整个工艺考虑到废料中有价金属以及有害元素的分离回收,具有良好的经济效益和环境效益。
从由对基本上无锂的钴资源材料进行加工而得到的包含硫酸钠和/或连二硫酸钠的液剂进行除水和/或再循环工艺,其包括如下步骤:将钴沉淀为碳酸钴或氢氧化钴,之后将其从所述液剂除去,将硫酸钠和连二硫酸钠结晶并且将所述晶体除去,之后将所述晶体加热为无水硫酸钠、二氧化硫和水,然后分离无水硫酸钠。
本发明研究了一种从氢氟酸溶液中去除铀的工艺,该工艺以含铀氢氟酸溶液为研究对象,通过隧道式工业微波的方法对氟化钙进行改性,进而去除氢氟酸溶液中的铀。该方法既能降低氢氟酸中铀的浓度,又不引入其他离子,不会对氢氟酸溶液造成污染;整个工艺过程,成本低,三废少,绿色环保,操作简单,易于实现,较好的达到从氢氟酸溶液中去除铀,回收氢氟酸的目的,其铀去除率达到95%以上。在该工艺中,所选氟化钙廉价易得,改性后的氟化钙具备大规模应用的潜在价值。
本发明提供了一种磷酸铁锂废旧电池正极材料回收再生方法,包括以下步骤:将回收的磷酸铁锂废旧电池完全放电后进行拆解,取出正极片;用有机溶剂对正极片进行清洗,除去残留电解液,干燥;将干燥后正极片浸入有机酸与水形成的分散液中,加热、搅拌;将上一步的混合物过筛,分离出集流体,得悬浊液,将其在搅拌下蒸干,真空干燥得回收材料粉末;测定元素Li、Fe含量,补锂,混匀,混匀物料在惰性气氛下焙烧得到回收再生的正极材料。本发明使用上述分散液对集流体和正极活性材料进行分离,大大提高了铝、磷酸铁锂的回收率和二者分离效率,该工艺简便快捷,节省了机械法、酸浸或碱浸等繁复回收铝的步骤,降低了成本,避免对环境造成的二次污染。
本发明公开了一种含锌电子废弃物高效分离锌同步制备纳米氧化锌的方法,该方法是将含锌电子废弃物与碳质还原剂及由氧化钙和惰性氧化铝组成的稳定剂混匀后,置于惰性气氛下在800~950℃温度下进行焙烧,焙烧挥发物依次进入弱氧化性气氛中在700~950℃进行氧化焙烧和强氧化性气氛中在500~700℃进行氧化焙烧,得到纳米氧化锌粉体;该方法以含锌电子废弃物为原料高效回收锌并制备出高纯度纳米氧化锌粉体材料,不但实现了废物利用,而且获得较高的经济价值,且该方法操作简单、生产成本低、环境友好,满足工业化生产要求。
本发明涉及一种利用高熵合金提纯多晶硅的方法,属于高晶硅提纯领域。利用高熵合金提纯多晶硅的方法,包括如下步骤:a、将高熵合金与原料硅混合,在真空或惰性气氛中加热至熔融,在电磁场下进行定向凝固;b、定向凝固后冷却,将硅与合金分离,得到提纯后的多晶硅。本发明方法,利用真空电磁感应炉和定向凝固装置实现高熵合金相与硅相分离,在实现硅中除硼的同时,提高合金的耐磨性能,为低成本制备太阳能级硅技术在除硼环节上提供新的思路。
本发明公开了一种从锂电池中萃取金属离子的方法,该方法采用双酮类化合物和有机膦化合物协同分步萃取锂电池浸出液中的各金属离子,分别获得负载各金属离子的负载有机相,然后对各负载有机相分别进行反萃,分别得到富含各金属离子的反萃液。本发明提供的方法仅采用一种萃取有机相就可实现对锂电池正极材料浸出液中多种金属离子的高效回收,简化了工艺设备及流程;同时,各金属离子的回收率均在97%以上,废旧锂电池回收的经济性得到大大提升。
本发明公开了一种去除电解锌溶液中氯离子的泡沫复材及其制备方法和应用。该泡沫复材质量组成为m(泡沫金属)∶m(吸附体)=1∶0.1~2,所述泡沫金属为泡沫钛、泡沫镍、泡沫铝中的一种,所述吸附体为化学沉淀法制备的镁铝水滑石,n(Mg)∶n(Al)=(0.5~4)∶1。本发明提供的泡沫复材具有如下的优点及效果:(1)工业化生产操作更简单、快捷,克服了目前氯离子粉体吸附材料在使用过程中跑冒滴漏的缺点;(2)再生过程,操作简单、快捷,亦不存在跑冒滴漏的问题;(3)泡沫复材上的氯离子吸附体附着牢固,不会带入任何自身成分二次污染电解锌溶液。
本发明提供了一种利用磁铁矿修饰物处理固体废物焚烧飞灰中重金属的方法,属于环境治理以及固体废物处理技术领域。本发明方法先用盐酸将飞灰中的金属浸出,再用腐殖酸改性磁铁矿将浸出液中的镉和铅有效的去除,此外,还可利用配制在脂肪族化合物中的5‑壬基水杨醛肟回收浸出液中的铜,利用配制在脂肪族或芳香族化合物中的二硫代膦酸572回收浸出液中的锌,从而回收和去除了飞灰中的重金属,实现飞灰中重金属的综合处理及资源化。本发明方法工艺简单、绿色环保、易实施,适合大批量生产和工程应用,对处理飞灰中的重金属具有重大意义。
本发明提供了一种剥锌设备阴极板自动运载和放置装置及其运行方法,该装置包括阴极板运载小车和阴极板放板架,阴极板运载小车包括车架、车轮组件、电机减速机、水平轮组件、举升叉组件、丝杠驱动组件、阴极板托架;阴极板放置架包括架体、导轨、限位座、齿板架、定位锥组件。该方法为所述装置在剥锌设备的进板端时,天车从电解槽中吊来的的待剥锌阴极板放置在阴极板放置架上,阴极板运载小车分次运输到进出板链,进入剥锌设备进行剥锌作业;在剥锌设备的出板端,阴极板运载小车将已剥锌阴极板从进出板链运输到阴极板放板架上,由天车吊回到电解槽中。本装置结构紧凑,运行平稳,且减少了等待时间,提高了剥锌设备的作业效率。
一种含硫酸铅物料的氯化脱铅液循环利用的方法,本发明将含硫酸铅物料加入氯化钠溶液中脱铅并将脱铅液循环利用,将含硫酸铅物料加入氯化钠溶液中,搅拌下加热反应一段时间后趁热过滤,得浸出渣和浸出液;将浸出液冷却过滤,得富铅渣和脱铅滤液;向脱铅滤液中加入铅粉除杂,搅拌下加热反应一段时间后加入碱调节pH值为8.0~13.0,过滤,得沉淀渣和沉淀后滤液;加入盐酸调节沉淀后滤液pH值为4.0~7.0后补加氯化钠循环利用。本发明具有工艺简单,成本低廉,脱铅效果好,脱铅液可循环利用,大大减少了废水排放量。
本发明涉及一种废旧电池回收过程中同时催化产氢的方法和装置,该方法主要包括以下步骤:(1)提取石墨:将负极片破碎置入反应器中,添加热水,水位高于粗滤网,得到石墨浆液;(2)催化剂制备:通过过量体积浸渍法,将负极脱落的石墨制备成Ni/C催化剂,过程中需要添加镍盐。(3)催化制氢:将Ni/C催化剂和正极片在粗滤网上,并加入高浓度溶解液进行溶解制氢,液位高于滤网;(4)剩余物质回收:粗滤网上的催化剂可重复利用,浆液为正极材料和含铝溶液可进行下一步电池回收工艺,收集的气体为氢气。本发明的目的是深入挖掘废旧电池潜力,将负极石墨再利用,同时催化制备清洁能源氢气,同时不影响电池回收的正常流程和回收效率。
本发明提供了一种熔盐电解精炼方法及回收处理其阴极析出物的方法。所述回收处理方法包括:将阴极析出物置于酸浓度不小于0.01mol/L的稀酸水溶液中进行浸取,得浸取液;继续使用浸取,得饱和浸取液;调节其pH值,形成沉淀;过滤,得澄清溶液;进行结晶处理,得到电解质结晶。所述精炼方法包括采用上述回收处理方法来处理含有目标产品的阴极析出物。本发明的有益效果包括:能够实现对熔盐电解精炼的阴极析出物所夹带的电解质进行分离和回收,且不影响阴极析出物后处理工艺效果;回收能耗低、工艺经济性好、环境压力小。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!