本发明属于火法冶金技术领域,具体涉及一种基于高S高Fe金矿与含铜废料直接熔炼回收金和铜的方法。所述方法是将高S高Fe金矿、助熔剂混合研磨得到含有S、Fe、Si、Au的混合料,再将混合料与含铜废料以层结构的形式间隔平铺于坩埚中,最底层为混合料;将坩埚中的物料进行熔炼,熔炼后,冷却降温,取出坩埚,放入冰水中水淬,得到含金铁锍和熔炼渣。本发明直接将高S高Fe金矿配入含铜废料进行直接熔炼,金富集在铁锍相中,再从铁锍中回收金和铜,从而实现对金的富集。该方法兼具传统火法熔炼金回收率高的优点,同时经济成本低、污染少,且铁锍和熔炼渣分离效果好。
本发明涉及一种用于混合碱性含钒物料与含钒熟料的方法及其装置,所述装置包括倾斜设置的罐体,所述罐体上设置有物料进出口,所述罐体内设置有搅拌破碎桨叶,所述罐体外包覆有用于加热所述罐体的加热夹套,所述罐体能够自转;所述装置运行过程中,将碱性含钒物料与含钒熟料通过物料进出口加入所述罐体内,之后罐体自转,通过搅拌破碎桨叶对物料进行搅拌破碎,从而能有效缓解物料间的结块,本发明所述装置用于混合碱性含钒物料与含钒熟料的过程中,混合得到的混合料的结球率控制在0.3%以下,从而有利于保证后期提钒工艺的顺利进行,简化工艺流程,降低生产成本。
一种热管配置的热交换器(10),用于通过热传递流体在第一工艺流和第二工艺流之间传递热量,该热交换器包括:至少一个第一工艺流通道(19);至少一个第二工艺流通道(29);以及壳体(11),该壳体将第一和第二工艺流通道(19、29)封闭在容积(55)内。由于热传递过程,容积(55)被热传递流体的汽相和液相完全充满。第一和第二工艺流通道(19、29)由分离区(50)隔开,该分离区能够使所述汽相和液相重力分离并限制液相热传递流体在第一工艺流通道(19)周围的积聚。除其他应用外,这种热交换器可用于替代拜耳工艺设备中的闪蒸冷却阶段。
本发明公开了一步法回收金属的方法,尤其是一步法回收硫化矿尾矿中金属的方法,属于废物资源化技术领域。本发明提供的这种方法通过通过在双室微生物燃料电池的阳极室浸出硫化矿尾矿,将金属元素分别以金属离子的形式从固相转移到液相,随后,金属离子透过位于阳极室与阴极室之间的阳离子交换膜到达阴极室,并与氢氧根结合,以沉淀的形式回收,一步实现硫化矿尾矿中金属的回收,且金属回收率最高可达70%。本发明方法工艺流程简单,运行成本低,尾矿中金属元素的回收率高,设备腐蚀得到缓解,且无二次污染。
本发明提出一种从含铋溶液中用溶剂萃取法提取铋及制备氧化铋的方法,包括步骤:(1)Fe3+还原;(2)铋水解;(3)铋水解渣盐酸重溶;(4)萃取;(5)洗涤;(6)反萃沉淀(7)热分解等步骤。本发明提出的方法,实现了铋的充分回收,可以直接得到三氧化二铋。与其他现有的湿法提铋流程相比,具有工艺流程短、适用性广,生产成本低、易实现产业化等优点。
一种常温超声‑过氧化氢湿法氧化从钕铁硼废料中去除铁和有机物等杂质的方法,涉及金属提取方法。包括酸溶解、超声‑H2O2氧化、H2O2氧化剩余Fe2+及沉淀除铁步骤。本发明能够产生空化泡,促进有机物的分解,低有机废气、废水的排放,防止对环境造成二次污染,有利于提高所回收稀土元素的纯度。
本发明拟在提供一种镍、钴生产企业萃余废水的深度处理回收方法,萃余污水初沉后残留镍钴浓度1.0~5.0mg/l、有机物浓度OiL≤20mg/l;初沉后萃余污水温度25℃~50℃、pH值6.0~8.5下,通过填充有活性二氧化锰的吸附柱或以单槽定量间歇式或以多槽并列连续搅拌方式吸附反应,萃余污水与活性二氧化锰粉的液固比为500:(1~5)、吸附时间20~40min,吸附结束后过滤,滤液水为可达标排放的工业污水;以8.0~12.0%的氨性溶液洗涤步骤(2)过滤后负载有镍钴的二氧化锰粉渣,洗脱镍钴的反洗液回收镍钴,洗脱后的二氧化锰漂洗再生。
一种圆筒体卧式常压强化浸出槽,由槽头封头、槽体以及槽尾封头组成,槽头封头、槽体以及槽尾封头的直径相同且在端头处均设置有法兰,两两之间通过法兰密封连接;槽体由槽筒、隔板组件以及搅拌组件组成,在隔板组件和搅拌组件上分别设有列管式加热管和盘管式加热管,搅拌机的桨叶为直板形,搅拌机可以受控正转或反转;将槽头封头、槽体以及槽尾封头组装成整体时,根据生产需要连接多个槽体,组成大型浸出槽。调整搅拌机的旋转方向可以进行连续浸出作业或者分批间断作业。浸出槽全密封,有尾气吸收系统,没有污染物排放,安全环保,易于制造与安装,并且方便维修或更换零部件。
本发明涉及一种循环式湿法制备高纯PbO的方法,提出一种回收废旧铅酸电池直接生产高纯PbO且化学原料可循环利用的方法。高纯PbO的制备方法先将废旧电池破碎分选出正/负极铅膏,正/负极铅膏粉通过氧化还原反应使铅膏中的铅完全转变为以氧化铅PbO和PbSO4构成的铅原料;再经过有机酸和有机酸盐混合溶液浸取除杂,然后溶液中沉铅脱硫,副产硫酸钠,得到铅沉淀物;用碱液通过溶解一沉淀过程纯化铅沉淀物,得到高纯的氢氧化铅,将氢氧化铅低温烧结可制备得到高纯PbO产品,有机酸盐母液可用于下一个循环;消除了现有氧化铅合成工艺流程周期长、高耗能和需消耗大量化学原料的缺点,降低了成本,是一种高技术附加值、节能环保和适宜大规模产业化的新技术。
本发明提供了一种废旧磷酸铁锂电池中高效回收锂的方法,该方法将废旧磷酸铁锂电池焙烧分选,得到含锂正极粉料,含锂粉料在氧化条件下与含钙碱性溶液反应,将铁和磷酸根转换为不溶于水的化合物,将锂转换为溶于水的氢氧化锂,过滤后得到氢氧化锂溶液,可用于进一步制备氢氧化锂或者碳酸锂产品;该发明摈弃了废旧电池回收过程中常规采用的湿法酸浸,避免了强酸的使用,因此避免了大量高盐废水的产生;该工艺选择性浸出锂元素,从源头上避免了铁杂质进入浸出液的问题,最终获得的锂产品纯度高,而且流程短,化学药剂来源广泛,工艺条件简单,可一步法得到高纯锂产品,极大的提高了废旧磷酸铁锂电池的回收效率,具有良好的工业应用前景。
一种通过α‑Sn相变分离回收无铅焊料的方法,先将需要二次回收的焊料合金冷轧至厚度1~10mm;所述焊料合金指含有杂质元素的Sn合金,其中各项杂质元素含量不超过5wt.%;再将经冷轧的金属板降温至‑13.2℃以下,在金属板表面喷洒粉状α‑Sn;之后进一步将金属板降温至‑33℃,使金属板在完成α‑Sn相变过程中破碎;使用粉碎机将破碎的物料初步粉碎,再经过喷射气流粉碎机进一步粉碎至粉体粒度5μm及以下,最后通过旋风分离将α‑Sn与金属间化合物、杂质分离,得到α‑Sn粉体。本发明相比传统的氧化法、氯化法和碱法具有污染小,合金成分回收率高的特点。
本发明针对机械法处理线路板过程中存在的不同组分混杂、分离不彻底、能耗高、破碎设备磨损大的缺点,提供一种线路板水热处理分离方法,其核心是使处理后线路板中环氧树脂脆化,失去粘接能力,经破碎后获得颗粒状或片状的铜箔与丝状的玻璃纤维。铜箔可以进一步用于回收贵金属,玻璃纤维可以用于回收阻燃剂,然后可以作为建材增强材料、树脂增强材料和催化剂载体等使用。
本发明公开了从钼镍矿中氧化浸出钼和镍的工艺,将钼镍矿粉、催化剂、酸溶液加入压力反应釜中,固液混合、通氧加压浸出钼和镍;所述催化剂为变价金属的可溶性化合物。本发明从钼镍矿中浸出钼和镍的浸出率高,均在95%以上,利用变价金属的氧化还原特性,在有氧气和水的条件下即可生成高价金属离子继续氧化浸出矿中的钼和镍,直至浸出完成,大量节约化学试剂和减少污染气体排放;工业化生产可取得良好的经济效益。
一种用于连续吸附交换设备的自密封阀系统,包括凸型水塞系统和凹型水塞系统;所述凸型水塞系统的一端与所述凹型水塞系统的一端密封连通;所述凸型水塞系统的另一端与所述凹型水塞系统的另一端分别连通到固定阀中的水道和活动阀中的水道,或者所述凸型水塞系统的另一端与所述凹型水塞系统的另一端分别连通到活动阀中的水道和固定阀中的水道。本发明的自密封阀系统,能有效克服传统连续离子交换床吸附过程中易出现偏流现象,避免造成部分树脂空置浪费,提高了树脂的使用效率;解决了现有技术中在解吸、再生过程中化学试剂的用量多,浪费严重,废液排放量大,运行的周期较长,连接的管路及阀门多,操作繁琐等问题。
本发明涉及一种自高硅酸性液中分离回收硅的方法。高硅酸性液中的硅以硅溶胶形式存在,由于其呈胶状、粘度大,导致硅与浸出液的分离异常困难,严重影响了酸法处理高硅矿物的工业化进程。本发明提出将高硅酸性液在高温保温一定时间,使硅溶胶长大及其部分脱水,从而改变硅溶胶的过滤性能,使硅容易从酸性液中过滤除去,对硅溶胶滤饼干燥并洗涤后,生产的初级产品中二氧化硅含量大于95%。
从含镍和/或钴的溶液中回收镍和/或钴的方法,其包括:(i)将含镍和/或钴的溶液与比镍和/或钴负电性更大的至少一种金属的金属颗粒接触,从而使所述溶液中的镍和/或钴与所述金属颗粒之间能够发生置换过程而产生镍和/或钴的置换物;以及(ii)将所述镍和/或钴置换物与所述金属颗粒分离,从而产生包括镍和/或钴置换物的浆液。
本发明公开了一种从含钒、铬的溶液中选择性分离和提取钒与铬的方法,(1)加入NaHSO3使V(V)和Cr(VI)还原为V(IV)与Cr(III);(2)加入H2O2将V(IV)氧化成V(V);(3)由离子交换柱选择性吸附含钒阴离子,收集贯穿前流出液;(4)将离子交换柱内的铬洗涤下来,并加入贯穿前的流出液以提铬;(5)用NaOH洗脱负载钒的树脂,得到含钒洗脱液;(6)洗脱液制得偏钒酸铵,煅烧得到V2O5;(7)调节铬溶液pH使铬以Cr(OH)3·nH2O的形式析出,煅烧即得Cr2O3粉末。本发明能实现钒和铬的高效分离及其高纯度提取,总回收率分别可达82~90%和94%~99%,终产品纯度分别可达96~99%和94~97%。
本发明涉及氧化硫硫杆菌及制革污泥中铬的生物脱除方法。菌株命名为TS6, 保藏号CGMCC NO.0759。利用所述的氧化硫硫杆菌脱除制革污泥中铬的方法是在生物反应器中向制革污泥中投加1~3g/L元素硫, 接种10~15%(v/v, 下文同)TS6菌株, 搅拌、通气、沉降; 沉降污泥10-20%回流至反应器; 剩余沉降污泥脱水; 液相部分投加碱性物质使Cr3+变成Cr(OH)3沉淀, 沉淀经硫酸溶解进入鞣革工段; 固相部分中和后农用。污泥中Cr去除率在95%-100%, 污泥中养分保留率80%以上。
一种废旧印刷电路板混合金属中铅元素的真空 蒸馏分离方法,首先将经破碎的废旧电路板含铅的混合金属粉 末在真空炉中进行加热,在压力1~1×10- 1Pa、温度为700~800℃条件下进行铅蒸发,同 时通过冷凝器在330~360℃下进行铅蒸气冷凝,由此将铅从混 合金属中分离出来。蒸馏完毕的混合金属可以继续用于下一步 具有针对性的提纯分离。本发明的方法简单易行,具有成本低、 高效、无污染等特点。
一种废旧印刷电路板混合金属中铋元素的真空蒸馏分离方法,首先将经破碎的废旧电路板含铋的混合金属粉末在真空炉中进行加热,在压力1×102~1Pa、温度为600~800℃条件下进行铋蒸发,同时通过冷凝器在540~560℃下进行铋蒸气冷凝,由此将铋从混合金属中分离出来。蒸馏完毕的混合金属可以继续用于下一步具有针对性的提纯分离。本发明的方法简单易行,具有成本低、高效、无污染等特点。
本发明提供了一种用硫酸浸出含Zn29.77~ 42.28%、Cd0.033~0.41%,SiO25.38~31.57%, Fe2.14~10.18%和MgO0.24~1.25%的硅酸锌矿制 取金属锌的方法。该方法解决了高浓度SiO2矿浆聚 沉为易过滤易洗涤的沉淀物,矿浆过滤速度达1.4~ 2.54米3/米2·小时,锌的浸出率达96~99.58%镉 的浸出率达93.5~97%。至电解锌锌回收率达 93.06~95.52%。该方法先进实用、工艺简单,操作 方便,容易掌握,能耗低。特别适合处理含SiO2、Fe 高的硅酸锌矿。
本发明的目的在于提供一种原材料合金粉末的 制造方法, 可以有效地用于R-Fe-B型烧结磁体剩料或次品的 再生, 同时仅留下主相晶粒, 并且提供一种R-Fe-B型磁体的 制造方法。对R-Fe-B型烧结磁体剩料或次品进行粉碎、酸 洗和干燥, 然后对此产物进行钙还原处理, 对此产物清洗去除钙 成分, 可有效再生由有利于磁体性能的Nd2Fe14B主相系统组成的原材料合金粉末。通过向这种主相系统原材料合金粉末添加组成调节合金粉末, 用于改善烧结和调节组成, 制造烧结磁体, 有助于制造具有优异磁性能的烧结磁体。
本发明涉及一种具有封闭循环的湿法电解还原清洁回收铅的方法,利用电化学原理,通过建立封闭的电解液循环、活化剂对含铅物料的活化和高效阳极的催化析氧作用来实现固液两相一步还原反应将废铅蓄电池或铅蓄电池生产厂的含铅废料直接转化为金属铅的一种方法。这是一种新型的环保节能型湿法电解还原铅方法,可以进行大规模产业化应用的新技术。
一种金属/矿物回收和废物处理方法,包括主要分离阶段,其中载有金属/矿物的矿石加水配成淤浆并被分离为富集级分和含水金属/矿物废料级分,以及废物沉降阶段,其中含水金属/矿物废料级分在一个或多个沉降池中沉降从而提供增稠的沉降层和上层清液;而该废物沉降阶段包括将含水金属/矿物废料喂入到固体接触容器或其它絮凝室中,其中含水金属/矿物废料以含一种以上浓度的一种或多种絮凝剂的水稀释,絮凝剂浓度之一是另一浓度的至少10倍高,在SCV内,使稀释的含水废物絮凝,并在沉降槽中使稀释并絮凝的含水废物沉降,从而在沉降槽中提供液态上层清液层和可用泵输送的增稠沉降层。
红土矿流化床法生产含镍铁合金的工艺,其包括如下步骤:1)干燥,使红土矿水分控制在小于4%;2)破碎,将干燥后的红土矿首先用3mm的筛子进行筛分,得到小于3mm的红土矿粉用于流化床煤气选择性还原;3)预热,将干燥后的红土矿粉在流化床焙烧炉内进行预热,预热到700~950℃,预热后的红土矿粉输送到还原流化床内;4)选择性还原,在还原流化床内使用CO+H2为55~90%的煤气对红土矿进行还原;5)金属化红土矿的破碎和物理分离,将还原后的红土矿破碎到小于100目,然后进行物理分离,得到含镍铁合金。本发明利用煤气还原红土矿生产镍铁合金,用于不锈钢冶炼,取代昂贵的电解镍,从而显著降低不锈钢生产成本。
本发明提供一种用生物质木炭做还原剂的蒸馏炼锌技术,在基本不改变现有生产工艺的条件下,在蒸馏炼锌工艺的配料制团工序用生物质木炭做还原剂配料制团,可以全部用生物质木炭做还原剂配料制团,也可以用部分生物质木炭和部分洗精煤共同做还原剂配料制团,既能保证生产直收率和产品质量,又能节约大量高品质精煤,降低生产成本。选择农作物秸秆,尤其是玉米秸秆直接生产炭粉的工艺很简单,投资和生产成本都很低,容易廉价获取,同时,制造木炭过程中所产生的可燃气体经净化后可以用于蒸馏炼锌系统的热量供应,减少中块煤消耗以使整个蒸馏炼锌系统能耗降低。本发明为蒸馏炼锌工艺提出了一个节能降耗的解决方案,从而使蒸馏炼锌生产可持续发展。
本发明公开了一种废旧锂离子动力电池的再利用方法,该方法是将废旧锂离子动力电池进行放电和切段预处理后,置于保护气氛下进行热解处理;热解处理过程中产生的挥发组分中回收热解油和热解气作为热解处理过程的燃料;热解处理过程中产生的热解残渣经过剪切式破碎后进行筛分,得到粗粒级物料、中间粒级物料和细粒级物料;粗粒级物料通过色选或重选分离出金属铜和金属铝;细粒级物料通过浮选分离正极活性物质和碳颗粒;该方法能够实现废旧锂离子动力电池中铝、铜、活性材料和石墨等得到充分回收,同时充分实现废物再利,降低能耗,减少环境污染,且流程简单、适用的电池种类广、金属及正负极活性物质等的回收率高。
本申请提供一种从废旧锂离子电池材料中提取有价金属的方法,涉及固体废弃物回收领域。从废旧锂离子电池材料中提取有价金属的方法,包括:将包括废旧锂离子电池材料和单质硫在内的原料混合得到混合物料,然后将所述混合物料在富氧环境下焙烧得到焙烧料;将所述焙烧料粉碎后用水进行第一浸出,然后进行第一固液分离,得到含锂溶液和滤渣;将所述滤渣、水和酸混合进行第二浸出,然后进行第二固液分离,得到有价金属溶液。本申请提供的从废旧锂离子电池材料中提取有价金属的方法,操作简单、对环境影响小、成本低。
本发明提供一种回收废旧锂离子电池有价金属及再生三元正极材料的方法,包括以下步骤:将废旧锂离子电池放电、拆解、除杂得到正极片,通过高温去除正极片中的导电剂和粘结剂得到废旧三元正极材料;再生路线一可以分别通过添加还原剂的有机酸或者低共熔溶剂中浸出有价金属离子、采用海藻酸钠溶液交联金属离子形成具有三维网状结构的“蛋‑盒结构”的凝胶、煅烧后得到再生三元正极材料,再生路线二通过球磨纳米化利于锂离子进入颗粒内部进行补锂、凝胶修补凹凸不平的表面、煅烧后得到再生三元正极材料。两种再生路线操作简单易行,避免了有价金属离子的分离提纯等步骤,方法新颖,成本低,易于实现工业化,并且所制备的材料具有优异的电化学性能。
本发明涉及一种从海绵铜渣中生物氧化回收铜和富集贵金属的工艺。海绵铜渣中的铜以复杂难溶的砷硫化物形式存在,采用化学氧化浸出,存在浸出剂用量大、成本高、铜浸出率低、贵金属富集比低等缺点。本发明利用生物氧化浸出海绵铜渣,铜的浸出率能达到92%以上,同时渣中金银铂钯的富集比能得到有效提高。该方法具有金属资源回收率高、投资成本低、反应条件温和、不产生废气、不引入氯离子、对环境友好等特点。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!