本发明公开了一种木塑复合材料型材切割机,属于木塑复合材料型材粉碎技术领域。它包括支架、工作台、送料切割装置、驱动装置和碎屑集送装置,所述的送料切割装置包括切割锯、锯片压轮、上机架、下压辊和上压辊,所述的碎屑集送装置包括料斗和风机。本发明效率高,使用范围广,适应性强,有集尘集屑功能,能将木塑复合材料碎屑和分割后的板材同步收集一次粉碎,可以对较大宽度的木塑复合材料型材进行切割粉碎。能够与粉碎机直接对接,形成效率极高的木塑复合材料型材切割粉碎系统。
本发明涉及一种聚酰胺基复合材料及其制备方法,是一种兼具阻燃和导热的聚酰胺复合材料及其制备方法,其重量百分比组分为:聚酰胺:30~70%,改性复配石墨:30~70%,润滑剂:0.1~5%,抗氧剂:0.1~1%;以上各组分之和为100%;制备方法,包括以下步骤:㈠将聚酰胺、改性复配石墨、润滑剂和抗氧剂按照以上配比加入共混机中,共混5-10min;㈡将混合好的物料加入到双螺杆挤出机的主喂料口,在230-260℃下熔融挤出造粒。本发明“原位”法生成的氢氧化镁既是很好的无机阻燃剂,能和可膨胀石墨共同作用赋予复合材料优异的阻燃性能,又能起包覆作用,改善石墨复合材料的加工性能,复合材料阻燃和导热性能良好。
本发明公开了一种内置钢绞线复合材料波形防撞护栏,该波形防撞护栏包括复合材料波形护栏和钢绞线,所述复合材料波形护栏的中埋设钢绞线,所述的钢绞线处增设复合材料加厚部分。本发明具有重量轻、强度高,刚度大、耐腐蚀等优点;同时该结构的复合材料波形防撞护栏和钢绞线起到双层防护作用,适用于公路防撞护栏工程。
本发明公开一种聚乙烯极性高分子复合材料及其制备方法,属于高分子材料领域。其原辅材料配方组成如下,PE树脂、极性单体、引发剂、极性高聚物、抗氧剂。所述聚乙烯极性高分子复合材料的制备方法,具体包括采用失重式计量秤分区域加料方式,从双螺杆挤出机的不同区域加料口准确计量加入相应原辅材料,所有配方物料在双螺杆挤出过程中,极性单体与聚乙烯和极性高聚物之间发生化学接枝反应,同时熔融共混,得到性能稳定的聚乙烯极性高分子复合材料;所述分区域加料方式,是根据接枝反应进程加入相应配方原辅材料,可以有效发挥各原辅材料对复合材料性能的贡献和相互协同作用;本发明复合材料具体极性单体接枝率高,凝胶含量低,高强度且性能稳定。
本发明公开一种基于智能复合材料的复合型齿轮。该齿轮将智能复合材料腹板与金属齿圈连接,保证齿轮啮合强度的同时实现了轻量化。齿轮腹板部分基于智能复合材料,将复合材料的部分区域改性,如:加入压电纳米颗粒、碳纳米管等使其具有压电特性、压阻特性、热敏效应等,将结构与传感检测功能集于一体。通过智能复合材料腹板实时检测齿轮温度、应力、应变、振动等,提高齿轮耐用性和可靠性,并减少检查和结构的维护成本。同时,由于压阻特性与齿轮结构设计产生的附加阻尼,使得该齿轮拥有额外减振效果。
本发明涉及一种纤维复合材料及其制备方法,属于复合材料及其制备技术领域。解决了现有技术中纤维复合材料导热,耐腐性性能差以及应力集中导致过早损坏的问题。采用的技术方案:包括以下原料:聚酰胺树脂30‑40份;黄麻纤维11‑17份;尼龙增韧剂8‑14份;黑色母3‑8份;偶联剂3‑10份。在聚酰胺塑料中加入黄麻纤维、尼龙增韧剂,使得纤维复合材料具有重量轻、导热性和耐腐蚀性好的优点,黄麻纤维以及尼龙增韧剂的加入使纤维复合材料的结构强度更高,且在其中加入偶联剂在玻璃纤维表面形成涂覆层,起着中间粘结层及传递应力的作用;本发明的制备方法工艺简单,操作方便,效益高,成本低,适于工业化生产。
本发明公开了一种钴酸锌纳米片/碳纤维布复合材料及其制备方法与应用。所述制备方法包括:采用电化学方法对碳纤维布表面进行亲水化处理,获得亲水化碳纤维布;以所述亲水化碳纤维布作为对电极,并与工作电极、参比电极及第一电解液配合形成第一电化学体系,采用双向脉冲电沉积技术,从而制得锌钴水合氢氧化物/碳纤维布复合材料;以及,对所述锌钴水合氢氧化物/碳纤维布复合材料进行高温退火处理,获得钴酸锌纳米片/碳纤维布复合材料。本发明采用的电化学沉积体系是有机体系,制备的钴酸锌纳米片/碳纤维布复合材料中钴酸锌纳米片相比于其他方法和体系更为超薄;同时本发明采用双向脉冲电沉积技术,沉积的钴酸锌更为均匀。
本发明公开一种软磁复合材料,包括第一软磁金属粉末、第一绝缘包覆材料和气流破碎造粒粉。其中,气流破碎造粒粉包括第二软磁金属粉末和第二绝缘包覆材料,且第二绝缘包覆材料完全固化。软磁复合材料中的第一绝缘包覆材料和/或第二绝缘包覆材料分散均匀,将软磁复合材料用于制备金属粉芯和模压电感,制得的模压电感具有较高的绝缘电阻和初始磁导率。相应地,本发明还公开了一种软磁复合材料的制备方法,制得的软磁复合材料中的第一绝缘包覆材料和/或第二绝缘包覆材料分散均匀,且操作简单,成本较低。相应地,本发明还公开了一种金属粉芯及其制备方法和一种模压电感及其制备方法。
本发明公开了一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用,将铁盐溶剂热反应后煅烧,得到花状多孔氧化铁;螯合剂存在下,将花状氧化铁在溶剂中与铈盐反应,得到花状铁铈复合材料;将花状铁铈复合材料与含有铂盐的溶液混合后去除溶剂,再经过低温煅烧得到负载铂的花状铁铈复合材料;将负载铂的花状铁铈复合材料置入含有甲苯的环境中,低温加热,完成甲苯的处理。本发明利用固定床反应器完成甲苯的处理,优选的,低温完全催化氧化甲苯气体的最佳温度为195℃。
一种陶瓷基复合材料螺栓预制体‑结构一体化设计方法,包括如下步骤:预制体建模;结构建模;变形与失效计算。本发明依据陶瓷基复合材料的实际细观结构,建出了螺栓内部不同的小复合材料,可以实现因小复合材料内的细观失效引起的结构上的宏观失效。本发明所建出的螺纹,可以体现螺纹牙失效形式,并且还考虑了螺纹上复杂的应力情况对螺杆断裂失效形式的影响,从而提高CMCs螺栓的强度的预测精确度。本发明依据结构的实际尺寸和形状,建成了某种结构的陶瓷基复合材料预制体‑结构一体化模型,模型精确度高,能准确反映出材料各组成部分,同时给出宏观和细观结构参数,便于制备人员加工。
本发明属于防腐涂料领域,尤其涉及一种包含石墨烯/聚苯胺/凹凸棒土复合材料的防腐涂料及其制备方法。首先制备石墨烯/聚苯胺/凹凸棒土复合材料的制备,再将该复合材料先后用硅烷偶联剂和蜡材料改性,最后与环氧树脂、填料等组分配制成防腐涂料。石墨烯/聚苯胺/凹凸棒土复合材料在防腐涂料中起到电化学防腐和物理防腐双重功效;并且通过化学键反应对石墨烯类防腐材料负载上有机蜡,促进了石墨烯类复合材料在有机涂料体系中的分散性和存储稳定性。
本发明公开了一种复合材料在线检测装置及其检测方法,包括视觉检测装置,采用机器视觉的方式对复合材料表面缺陷进行检测;超声波检测装置,对复合材料内部的缺陷进行检测;标识涂色机构,对存在表面和或内部缺陷的复合材料进行区段涂色标识;所述视觉检测装置、超声波检测装置以及标识涂色机构依次排开,复合材料依次穿过所述视觉检测装置、超声波检测装置以及标识涂色机构,先通过视觉检测设备进行表面划伤、缺料的缺陷检测,再通过超声波检测设备进行复合界面的气孔、分层、界面分离、夹杂缺陷检测;在检测完成后在缺陷区段通过标识涂色机构上进行涂色标识出不良区域。
本发明属于本发明属化学合成领域,尤其涉及一种石墨烯/碳纳米管气凝胶聚合物导电复合材料的制备方法及其应用。一种石墨烯/碳纳米管气凝胶聚合物导电复合材料的制备方法,包括以下步骤:石墨烯/碳纳米管气凝胶与高分子聚合物前驱体混合后,形成反应混合液,将反应混合液经微波或紫外照射后形成石墨烯/碳纳米管气凝胶高分子聚合物前驱体混合物;加热石墨烯/碳纳米管气凝胶高分子聚合物前驱体混合物,然后进行固化处理,加热的温度是48~85℃,固化时间是1.5~6h,固化温度是85~155℃,得石墨烯/碳纳米管气凝胶聚合物导电复合材料,复合材料的导电能力比传统石墨烯基复合材料高2~7个数量级。
本发明公开了一种能够避免复合材料在模压过程中纤维错位的连续纤维增强热塑性复合材料成型装置。该连续纤维增强热塑性复合材料成型装置,包括纤维缠绕系统、纤维分散系统、纤维缠绕张力控制系统、复合张力控制装置、复合定压装置、树脂浸渍系统、储胶系统、电路接口复合系统、纤维夹持装置;采用该连续纤维增强热塑性复合材料成型装置,具有结构简单、紧凑、工艺佳和操作方便等优点。此外,该连续纤维增强热塑性复合材料成型装置可以在多场合使用,比如高温烘箱和模压机。
本发明公开了一种竹炭纤维‑四氧化三铁复合材料的制备方法,包括:(1)将长度为0.1~1mm的竹炭纤维加入无水乙醇中,以400~800W的功率超声分散处理2~3h,得到竹炭纤维悬浮液;(2)在搅拌条件下,向上述竹炭纤维悬浮液中加入一定量的铁盐溶液,再于60~80℃水浴条件下滴加碱溶液,控制溶液的pH值为10~12,反应8~12h,停止反应;(3)将步骤(2)中的产物进行真空抽滤,所得沉淀物采用去离子水洗涤至中性,于30~50℃条件下干燥,得到竹炭纤维‑四氧化三铁复合材料。本发明制得的竹炭纤维‑四氧化三铁复合材料中,通过添加竹炭纤维,使得该复合材料具有较大的比表面积,且四氧化三铁能够均匀地分散在竹炭纤维中,因此该复合材料具有较好的吸附性能。
本发明属于复合材料修复技术领域,特别是涉及一种复合材料热压粘接控制仪,包括箱体,箱体上表面为面板,所述面板上至少分布有控制器、信号输出控制模块、气路输入输出模块、电源开关模块、电源输入输出模块、温度传感器接线模块,箱体内部至少安装有供电模块、高压供气模块、加热调功模块、真空抽气模块;所述供电模块、高压供气模块、加热调功模块、真空抽气模块集成在内部框架上。本发明所述复合材料热压粘接控制仪在实现现有复合材料热补仪加温和抽真空固化的基础上,增加的高压供气模块可调节充气压力,配合适当的加压装置能获得与热压罐固化工艺相类似的复合材料补片固化质量和可靠的粘接界面,大幅度地提升维修补片和维修区域力学性能。
本发明公开了一种基于重复子结构的复合材料有限元建模方法,包括以下步骤:建立复合材料精细化的多组分单胞有限元模型;基于上述精细化的多组分单胞有限元模型,建立复合材料重复子结构模型;对重复子结构进行缩聚,然后将特征矩阵装配到单胞残余结构,得到全复合材料分析模型;此方法在保证计算精度的同时简化了复合材料精细化建模工程,极大的提高建模效率,具有十分重要的工程意义。
本发明涉及一种多层不同密度的非织造吸音复合材料及其制备方法,包括以下具体步骤:A.将多孔涤纶纤维开松,梳理,成网;B.将纤维网输入针刺机中进行针刺加固,圈绕,切断,制成布料,所述布料的厚度为4mm~40mm,面密度为40g/m2~500g/m 2;C.将2~6层布料层叠设置,进行热压复合,然后冷却。选择多孔涤纶为主要原料设计内外层密度不同、厚度不同,增强对噪声的全面吸收,使得材料获得了很好的吸声效果。热压的温度为100℃~120℃,以及由该方法制成的吸声针刺非织造复合材料。本发明的吸声针刺非织造复合材料经热压复合后吸声性能显著提升,且轻薄、强度高、生产成本低。
一种微波-压力罐成型高性能复合材料构件的方法和装置,它主要包括:冷却系统(2),储气罐(6),微波传输线(9),微波辐射天线(10),压力安全阀(11),多边形多模谐振腔(14),微波发生及测量模块(17),温度测量及控制模块(18),抽真空及控制模块(19),压力测量及控制模块(20),电源模块(21),物料平台(23),成型模具(24),温度传感器(26),罐体(28)等。该设备为高性能复合材料构件的微波成型设备,将未固化的复合材料构件放置到此设备中,采用真空袋抽真空、气体加压和微波加热工艺技术,实现高性能复合材料构件的快速成型,能提高复合材料构件的质量和性能。
本实用新型公开了一种用于复合材料叶片成型的装置及其使用方法,包括支撑框架和布置在支撑框架上的模体;所述模体的型腔内部布置有气囊,所述气囊充气后的形状及尺寸与所要制作的复合材料叶片的内型腔的形状和尺寸一致;所述模体位于复合材料叶片根部的一端设有与气囊相连的气嘴;制作复合材料叶片的预浸料布置在模体内并包覆在气囊上,通过气囊吹胀成型复合材料叶片,解决泡沫碎裂及真空带残留的问题。采用本实用新型装置成型的复合材料叶片的成型质量好,且成型效率高,制造成本低廉。成型过程操作简单、方便,且易于集成,更利于批量化生产,具有非常好的实用价值。
本实用新型揭示了一种复合材料性能测试样件制作装置,包括设备支架,还包括用于完成对待测试复合材料纤维固定的材料固定机构、用于完成对待测试复合材料纤维张紧及涂胶处理的材料加工机构、以及用于实现加工后复合材料纤维张紧收纳的材料收集机构,所述材料固定机构、材料加工机构及材料收集机构按序固定设置于所述设备支架上、且三者共同配合完成复合材料性能测试样件的制作。本实用新型采用自动化的方式完成了复合材料性能测试样件的制作,整个操作过均借助机械控制,稳定而准确,不仅显著地提升了测试样件制作的准确性和可靠性,还在最大限度上降低了人工操作的作业量,提升了加工企业的生产效率。
本发明公开了一种ZnO量子点‑环氧树脂复合材料及其制备方法,取油酸修饰的ZnO量子点,均匀分散于正己烷中,得到ZnO量子点分散液;然后加入聚酰胺固化剂,在50~70℃水浴下旋转蒸发20~40min,所得产物冷却至室温并与双酚A型环氧树脂在2~10k Pa下混合10~20min;最后混合物倒入模具中,真空除泡15~20min,并在室温下固化0.8~1.2h,最后升温至70~80℃下固化2.5~3.5h即得。本发明方法制备的的环氧树脂复合材料,具有较少的气泡,以及较高的紫外光吸收率,与较高的可见光透过率,并可以保持环氧树脂的力学性能,该复合材料在紫外光激发下可以发射黄光。
本发明公开了一种高效去除酸性废水中金属铜离子的复合材料,制成该复合材料的原料包括二氧化钛与植酸。本发明还公开了该复合材料及其制法:采用机械力研磨手段,将原料按一定配比置于磨机中,磨机转速为100‑1000r/min,研磨得到复合材料。将所述的复合材料投入待处理的含铜酸性废水中,经15‑120min搅拌处理后,即可实现酸性废水中铜离子99%以上的去除率,同时还能实现废水中的酸液循环利用。本发明所述的复合材料具有制备工艺简单、绿色环保、无需加碱中和就能够高效去除酸性废水中的金属铜离子且实现酸液循环利用等优点,可广泛应用于化工、冶炼、电镀等行业的含铜酸性废水处理。
本发明涉及石墨烯‑聚合物技术领域,尤其是一种石墨烯‑聚合物复合材料的制备方法,包含制备高浓度母料的步骤、制备高导热复合材料母粒的步骤和制备复合材料成品的步骤,本申请通过石墨烯与聚合物相容剂混合预先形成母料,然后将其进一步分散通用聚合物中从而得到母粒。这就解决了石墨烯在聚合物基体中不易分散的难题,从而实现了石墨烯和聚合物的优势互补,使得该复合材料具有较好的导热、力学增强性能。该复合材料导热性能各向同性,形状可以任意设计,如平板型、弧型、圆管型或者异型。本发明的复合材料可以用于导热管材、热交换设备及建筑等方面具有广泛的应用,并能够工业化规模生产、生产成本低廉且环境友好。
本发明公开了一种硫氮共掺杂多孔碳担载的三元过渡金属复合材料,化学式为(Co,Ni,Fe)9S8/NSCSs,(Co,Ni,Fe)9S8/NSCSs为纺锤状,包含以下质量百分数的元素:N:1~2wt%,O:3~5wt%,S:3~4wt%,Fe:3~5wt%,Co:4~5wt%,Ni:6~8wt%,其余为C。本发明还公开了一种硫氮共掺杂多孔碳担载的三元过渡金属复合材料的制备方法。本发明制备的三元过渡金属复合材料由于金属‑硫键独特的电子结构、CoNiFe三元组分间的协同作用以及N和S杂原子共掺杂碳提供了高活性位点,使(Co,Ni,Fe)9S8三元金属硫化物比商业RuO2催化剂有更好的电化学性能。
本发明公开了一种用于光热海水淡化的空心球型复合材料及制备方法,该空心球由复合材料经过挤压并发泡而成;复合材料由高分子材料与碳材料复合而成;高分子材料为聚丙烯腈、聚丙烯、聚苯乙烯、聚碳酸酯、聚氨酯与尼龙中的一种;碳材料为炭黑、无定形碳、石墨、石墨烯、氧化石墨烯中的一种。复合材料具体由聚丙烯腈和纳米碳黑复合而成;空心球的直径为0.5~6mm。该材料不仅具备自除盐特性,而且方便回收。本发明的空心球型复合材料在海水淡化时,可以有效减少盐析带来的光热转化效率降低的问题,展现出高效的光热转换效率和蒸发效率。本发明的空心球型复合材料还可以处理含有有机污染物及金属离子的废水,得到符合WHO标准的饮用水。
本发明公开了一种多轴向纤维增强拉挤型材夹芯复合材料承重梁及制备方法,包括:拉挤管芯材、拉挤管封口材料、复合材料腹板和复合材料面板;拉挤管芯材为矩形截面,其外表面缠绕有缠绕纤维布,并且由拉挤管封口材料进行封口;拉挤管芯材设有多个,多个拉挤管芯材拼叠形成组合构件,呈梁的形状,多个拉挤管芯材拼叠形成的组合构件其表面外包有外包纤维布;本发明通过采用真空袋成型工艺将树脂灌入模具使得面板、腹板与芯材整体一次成型;本发明采用复合材料夹芯结构,以拉挤型材为芯材,以复合材料为面层及腹板,充分利用了拉挤型材和复合材料夹层结构两种的优点,使得构件抗压、抗弯、抗剪以及抗剥离能力显著提高解决了承载力低及界面剥离问题。
本发明涉及一种含气凝胶的复合材料和复合面料及其制备方法,含气凝胶的复合材料包括气凝胶的粉体、热熔胶的粉体和发泡粉,热熔胶包括TPU热熔胶或PA热熔胶,含气凝胶的复合材料适用于与面料的复合。本发明的含气凝胶的复合材料,发泡后具有防水、透气、锁温效果。本发明的复合面料包括基层、面层及设于基层和面层之间的保温透气层,保温透气层由含气凝胶的复合材料制成,含气凝胶的复合材料由气凝胶的粉体、热熔胶的粉体和发泡粉混合而成,热熔胶为TPU热熔胶或PA热熔胶,气凝胶为二氧化硅气凝胶。
本发明公开了一种中空介孔碳球@氢氧化镍复合材料及其制备方法。所述的中空介孔碳球@氢氧化镍复合材料为核壳结构,其中,壳层为小尺寸(350~400 nm)、超薄(2~4 nm)的氢氧化镍,核为中空介孔碳球。这种复合材料具有多孔、比表面积大、导电性良好以及结构稳定的特性,可用于超级电容器电极材料,在电流密度为1 Ag‑1时其比电容高达844C g‑1,表现出较高的比容量。在电流密度为10 A g‑1的条件下测试其循环性能,3000圈后容量保持率达80.5%,具有很好的循环稳定性。
本发明提供了一种光催化复合材料的制备方法,涉及催化剂技术领域。本发明提供的制备方法,包括以下步骤:(1)植物叶片经浸泡预处理,得到模板生物质;(2)将钼源‑硫源水溶液与所述步骤(1)得到的模板生物质混合后经浸渍,得到复合材料前躯体;(3)将所述步骤(2)得到的复合材料前躯体煅烧,得到光催化复合材料。本发明的光催化复合材料包括针状硫化钼和生物质碳,所述针状硫化钼负载在片状生物质碳表面;生物质碳的质量含量为70%~90%,硫化钼的质量含量为10%~30%。本发明的光催化复合材料的光催化制氢性能优于纯硫化钼材料,且具有优异的抗光腐蚀性能,循环三次后制氢效率仅降低约10%。
中冶有色为您提供最新的江苏有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!