本发明公开一种热管理电池系统及其控制方法,其中热管理电池系统包括侧壁加热膜、电池加热膜、第一加热正继电器、第二加热正继电器、加热熔断器以及电磁模组,侧壁加热膜与第二加热正继电器相串联,电池加热膜与第一加热正继电器相串联,侧壁加热膜电路与电池加热膜电路相并联后的电路上设置有加热熔断器,电池模组电路上串联有电流采集器和主负继电器,侧壁加热膜电路和电池加热膜电路相并联后与电池模组电路相并联,在上述并联好的电路上串联有充电桩以实现电池模组的充电过程,在上述并联好的电路上串联有负载以实现电池模组的放电过程。本发明能够解决动力锂离子电池低温环境下的加热问题,避免锂电池充电过程中无法加热导致充电失败的问题。
本发明公开一种无钴单晶正极材料及其制备方法和应用。该无钴单晶正极材料的制备方法,包括:将Ni‑Mn基前驱体、锂源和掺杂剂M充分混合,随后经退火、冷却和粉碎过筛,得到掺杂型Ni‑Mn基核层材料;将Ni‑Al基前驱体、锂源和掺杂剂N充分混合,随后经退火、冷却和砂磨处理至纳米级,得到掺杂型Ni‑Al基壳层材料;将掺杂型Ni‑Mn基核层材料与掺杂型Ni‑Al基壳层材料充分混合,随后经煅烧、冷却和过筛,得到掺杂型核壳结构无钴单晶正极材料。本发明通过以Ni‑Mn基材料为核层、Ni‑Al基材料为壳层制备无钴单晶层状正极材料,该核壳结构以及元素掺杂的协同机制,显著提高了该材料在高压下的循环稳定性。
本发明公开了一种CuTCNQ@CuBTC核壳材料及其制备方法,所述核壳材料结构为CuTCNQ均匀地包覆在CuBTC外表面。所述制备方法,包括以下步骤:(1)将BTC的甲醇溶液滴加到三水合硝酸铜与聚乙烯吡咯烷酮的混合溶液中,静置得蓝色沉淀,离心洗涤干燥得CuBTC粉末;(2)将7,7,8,8‑四氰基对醌二甲烷和碘化锂混合到已脱气的乙腈溶液中,氮气回流后冷却,过滤洗涤,烘干得到紫色LiTCNQ;(3)将LiTCNQ溶液加入到CuBTC分散液中,离心,沉淀洗涤干燥,得到核壳结构CuTCNQ@CuBTC。本发明的复合材料电导率提高到了10‑7S/cm;反应进程更加容易控制,产物提纯更加容易。
本发明公开了一种水包水多彩涂料,所述由组分A、组分B、组分C混合制备而成,按质量份计:所述A组分为45%‑65%份去离子水、0.6%‑1.2%份聚丙烯酸酯、1%‑3%份水性助剂、5%‑15%份填料、20%‑35%份硅丙乳液、0.2%‑1.0%份硅酸镁锂,所述B组分为90%‑95%份去离子水、5%‑8%硅酸镁锂、0.1%‑1%份苯甲酸钠,所述C组分为自制硅丙乳液。该水包水多彩涂料及其生产工艺,通过硅丙乳液与其他助剂的配合使用,使得水包水多彩涂料在制备时,无需添加任何增稠剂,即可调节涂料的粘度,同时将多彩涂料中的彩粒悬浮在涂料中,增加涂料在制备时的效率,同时使得涂料的耐水白性和均匀性得到提升。
本发明公开了一种抗腐蚀铝合金刀片,包括:第一层材料和第二层材料,所述第一层材料由铝、镁、铜和锆组成,所述第二层材料由锡、钪、磷、铒和锂组成,所述第一层材料中各成分所占重量份数:铝50‑65份、镁5‑10份、铜0.6‑1.2份和锆1.1‑1.8份,所述第二层材料中各成分所占重量份数:锡5‑10份、钪0.3‑1.2份、磷0.1‑0.9份、铒3.1‑3.9份和锂2.1‑2.9份,所述抗腐蚀铝合金刀片中第一层材料在第二层材料的上方,并且通过无缝焊接的方式连接。通过上述方式,本发明提供的抗腐蚀铝合金刀片,具有良好的耐腐蚀性能,满足人们对刀具的长期使用需求。
一种海洋探测用490nm、533nm、690 nm、980nm、1064nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ1900nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ533nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ2337nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ490nm的倍频谐振腔Ⅱ19,总体构成490nm、533nm、690nm、980nm、1064nm、1960nm、2337nm七波长光纤激光器。
一种海洋探测用590nm515nm717.2 nm1180nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2360nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1827nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ590nm的倍频谐振腔Ⅱ19,总体构成590nm、515nm、717.2 nm、1180nm、1030nm、2360nm、1827nm七波长光纤激光器。
本发明涉及电池技术领域,尤其是一种复合聚合物电解质膜;其质量份组成如下:磷酸锂8‑16份、壳聚糖膜材料10‑50份、聚乙二胺8‑16份、聚乙二醚5‑10份、离子导电性高分子材料0.1‑0.9份、聚苯并咪唑3‑8份、聚亚苯基醚砜10‑15份、胶黏剂1‑3份、表面活性剂0.6‑2.6份;本发明中的电解质膜通过将磷酸锂、壳聚糖膜材料、聚乙二胺、聚乙二醚、离子导电性高分子材料、聚苯并咪唑、聚亚苯基醚砜、胶黏剂、表面活性剂配伍使用,提高了电解质膜的热稳定性能以及电化学性能。
一种海洋探测用584nm515nm715 nm1164nm1030nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2336nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1841nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ584nm的倍频谐振腔Ⅱ19,总体构成584nm、515nm、715 nm、1168nm、1030nm、2336nm、1841nm七波长光纤激光器。
本发明提供一种凡得他尼中间体及其制备方法,该凡得他尼中间体由化合物8在甲醇钠或金属锂、钠、钾等作用下经9酸化得到:其中X为氟、氯、溴、碘等卤素,R3为锂、钠、钾等金属。本发明有利于产品质量的控制,反应条件更为简单、温和、环保,对设备要求不高,各步反应收率较高。
本发明公开了一种以自制的MoO3微带为钼源,生物硫源L‑半胱氨酸为硫源,通过简单的水热法来自组装三维立体结构的花状MoS2材料的制备方法及其在锂离子电池领域的应用,其特征在于:所述材料是MoS2纳米片在水热反应条件下,通过自组装方法形成的花状结构材料。该方法是通过两步法合成出来需要的产物,且L‑半胱氨酸具有一定的生物活性,可以提供多种生物活性基团,促进花状结构的生成。将其作为锂离子电池的电极材料,表现出优异的循环稳定性,三维花状的MoS2可以增加其表面与电解液的接触面积,且在不断的循环充放电过程中,不会发生堆积粉化破碎,从而显著提高材料的储能性能。
本发明公开了一种基于体声波谐振器的光声波陀螺仪及其加工方法,陀螺仪包括铌酸锂光通路层、体声波谐振器、共型电极和玻璃衬底,玻璃衬底与体声波谐振器的硅层进行阳极键合,共型电极有多个,且均匀分布在体声波谐振器外围,并与玻璃衬底阳极键合,铌酸锂光路层覆盖在体声波谐振器上方,并在45°和225°方向延伸出光通路条,且光通路条位于共型电极上方;在每个共型电极和体声波谐振器底部设有金属焊盘;玻璃衬底上开设有与共型电极和体声波谐振器底部的金属焊盘位置一一对应的电极通孔。本发明可以做的很小,结构完整性好、测量精密度高;加工封装方法能缩短生产周期,适合批量化生产。
本发明公开了一种多元储能的微电网并网协调控制方法及其系统,方法如下:储能管理站接收微电网能量管理系统的控制指令和超级电容储能模块及磷酸铁锂电池储能模块的状态反馈指令控制第一储能变流器及第二储能变流器,控制所述超级电容和磷酸铁锂电池工作在以下任意一种工作状态:工作状态一:多元储能系统采用平滑功率波动的工作状态;工作状态二:多元储能系统采用跟踪调度出力的工作状态;工作状态三:多元储能系统采用削峰填谷的工作状态。本发明提高了微电网运行的可靠性,保证风力发电系统、光伏发电系统接入大电网系统的安全稳定性。
本发明涉及一种稳定型铁红密封固化剂及其制备方法,属于建筑材料技术领域。本发明采用透明状的纳米胶体硅与表面活性剂和渗透剂复配作为相容促进剂,在纳米氧化铁表面包裹一层纳米硅层,再利用两性的无机硅酸镁锂盐,在水和过程中会形成带电的片状层薄片,这些片状层的端面带正电荷,层面带负电荷,由于正负电荷吸引作用,使得在水和过程中片层逐渐形成“卡屋”结构,在水中硅酸锂镁盐片层剥离分散形成无色透明的凝胶液,它能在已分散的纳米氧化铁颗粒表面形成一层保护膜,这层柔性膜能够阻止纳米氧化铁发生聚集,并使膜内外的组分不至于相互扩散,制得颗粒小且均一性好的铁红色料,改善易造成局部色彩不均或泛白现象。 1
本发明提供一种数字化显示系统及方法,其中,所述数字化显示系统包括:采集流入/流出电池的电量数据或电流数据的采样单元;与所述采样单元电性连接的控制单元,其接收和处理所述采样单元采集的电量数据或电流数据;以及与所述控制单元电性连接且由所述控制单元控制的数字显示单元,其实时显示电池的当前电量。本发明的数字化显示系统及方法能够实现对锂电池吸尘器电量进行可靠的、数字化的显示,其保证了用户在使用锂电池吸尘器的过程中能够准确的了解到电池的电量信息。
本发明公开了一种观测级水下机器人电池舱,主要包括端盖、外壳、电池固定壳和锂电池。电池固定壳内装12节26650通用型锂电池,每节电池都有保护板。外壳套在电池固定壳上,两端与左右端盖配合,外壳的材料是成本较低的亚克力有机玻璃管。左右端盖的材料是铝合金,表面做阳极氧化处理,防止海水腐蚀;密封螺栓穿过端盖后旋入电池固定壳端面的孔内,使端盖得到固定。密封螺栓与端盖之间配合处也采用O型密封圈密封。该电池舱的电源线通过端盖的一个圆孔穿出,端盖上的沉头孔用灌封胶密封。
一种海洋探测用618nm728nm1236nm2472nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2472nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1765nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ618nm的倍频谐振腔Ⅱ19,总体构成618nm、515nm、728 nm、1236nm、1030nm、2472nm、1765nm七波长光纤激光器。
一种海洋探测用612nm515nm725 nm1224nm1030nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2448nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1778nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ612nm的倍频谐振腔Ⅱ19,总体构成612nm、515nm、725 nm、1224nm、1030nm、2448nm、1778nm七波长光纤激光器。
一种海洋探测用475nm、533nm、682 nm、950nm、1064nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ1900nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ533nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ2428nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ475nm的倍频谐振腔Ⅱ19,总体构成475nm、533nm、682nm、950nm、1064nm、1900nm、2428nm七波长光纤激光器。
本发明属于超滤技术领域,具体涉及一种防堵塞抑菌型荷电纳滤膜的制备方法。本发明通过将锂皂石与表面活性剂和正硅酸乙酯复合成稳定性的多孔异构材料,其支撑材料锂皂石晶体为两层硅氧四面体中间夹一层镁氧八面体构成片层结构,片层内形成很强的缺电子性而带负电荷,具有优异的吸附、离子交换性能,同时,将纳米氧化银嵌入在层间,制备改性无机颗粒,通过将无机颗粒分散并制备荷电纳滤膜,氧化银粉末经焙烧后分解为银单质,银单质用于选择性催化反应和加固荷电纳滤膜内部孔隙,同时对微生物负载进行抑制,有效加固膜孔强度,改善荷电纳滤膜耐污性能,抑制微生物繁殖形成生物膜,具有广阔的使用前景。
本发明公开了一种石英管的制备工艺,所述石英管制备包括以下掺杂物,配比为氧化铝0.3%-0.5%、氧化硼0.7%-0.9%、钙0.0008%-0.001%、氧化钡0.5%-0.7%、氧化钠0.03%-0.05%、氧化钾0.03%-0.05、氧化锂0.01%-0.02%、氧化钛0.01%-0.1%和二氧化硅96%-98%。用本发明的石英管制作的电光源类产品,在使用温度不超过700℃的情况下,不仅使用寿命长,还可以减少电极的氧化程度,提高光源的使用寿命,掺杂的TiO2可以使石英管可以更好的过滤波段早250μm以下的紫外线,减少对人体的伤害,可替代普通石英管。
本发明涉及一种锂离子电池石墨硅基复合负极材料及制备方法,所述石墨硅基复合负极材料包括纳米硅裂解碳复合材料、石墨和碳材料包覆层;制备方法是:首先用高能湿法机械球磨方法获得纳米硅,接着通过分散聚合将其和高残碳的聚合物复合,形成纳米硅镶嵌在聚合物微球中的聚合物/纳米硅复合微球乳液,再将该微球乳液与石墨复合,最后用有机碳源固相包覆,热处理,得到锂离子电池石墨硅基复合负极材料。此方法解决了纳米硅因其粒度小,比表面能高,易于发生团聚,特别是突破了纳米硅从液态的分散状态到干燥时团聚的问题。所得负极材料具有高比容量(>550mAh/g)、高首次充放电效率(>80%)及高导电性的特点。
本发明涉及一种茂金属线性低密度聚乙烯催化剂及其制备方法和应用,其结构由取代环戊二烯基、脂肪取代基或者取代的芳香族基、3单取代或3,6二取代的芴基、端位烯烃基、金属配位基五部分组成,制备方法包括步骤(1)制备3单取代或3,6-二取代芴基衍生物;(2)制备取代环戊二烯基;(3)制备芴基环戊二烯基配位体;(4)用有机配位体与制备芴基/环戊二烯基配位体锂盐,再与金属化合物反应,得到茂金属催化剂。本发明公开了一种新型的茂金属线性低密度聚乙烯催化剂,茂金属催化剂制得的LLDPE产品,聚合物的产品性能均匀,分子量分布窄,制备方法操作简便、产率高、原料易得,成本低、环境污染小,易于工业化生产。
本发明涉及曲前列尼尔中间体(Ⅰ)的制备方法,其包括:式(Ⅱ)化合物与式(Ⅲ)化合物或其酸式盐在缩合剂存在下反应得到式(Ⅳ)化合物;式(Ⅳ)化合物与式(Ⅴ)化合物反应得到式(Ⅰ)化合物。本发明采用韦伯酰胺与炔负离子反应直接得到酮化合物(Ⅰ),避免了使用重金属(PCC氧化剂)造成的环境污染,同时也避免了采用丁基锂的低温反应方法,本发明反应条件温和,收率高、产品纯度好,工业应用前景广阔。
一种风速仪用589nm、660nm、1064nm、1319nm四波长光纤输出激光器,设置589nm四波混频的周期极化铌酸锂激光谐振腔,设置1319nm分束光纤圈,分束一路1319nm激光输出,设置1064nm分束光纤圈,分束一路1064nm激光输出,设置660nm分束光纤圈,分束一路660nm输出,信号光589nm、闲频光1319nm、泵浦光I?1064nm与泵浦光II?660nm进入589nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光589nm输出,最后输出589nm、660nm、1064nm、1319nm四波长光纤激光输出。
本发明涉及一种铝掺杂锰基正极材料的制备方法,该铝掺杂锰基正极材料的基体材料成分为:Li[Ni0.3?xLi0.13Mn0.57Alx]O2,其中X=0.05?0.15。方法制备的正极材料,一定量的铝离子取代镍离子会减小锂镍混排程度,同时提高电池的热稳定性;石墨烯即可显著提高复合材料的倍率性能,既能保证正极材料制备的锂离子电池的高能量密度,又能提高其功率密度,并且降低了生产成本。
本发明公开了一种风电变桨系统的辅助混合电池容量检测系统及方法,所述系统包括可编程逻辑控制器PLC、锂动力电池组电量检测模块、超级电容组电量检测模块、结果显示模块和数据储存装置。所述方法如下:可编程逻辑控制器PLC控制着混合电池的充电状态,控制着各个电量检测模块的工作过程。锂动力电池组电量检测模块和超级电容组电量检测模块检测完成后,将检测得到的数据输出给PLC。PLC把各个电量检测模块传输来的数据进行计算处理,处理结果通过PLC中的通信模块RS232C输出给显示模块。结果显示模块将混合电池的各种数据显示出来,包括电池各个模块容量及总的电池容量,老化程度等。最后,数据储存装置把各项数据储存起来,以便日后对混合电池进行分析。
本发明涉及一种带指南针及时钟功能便携式音箱,它包括音箱本体,电源接口,开关,音频接口,控制电路板,锂电池,扬声器,控制键,时钟控制电路板,指南针;所述电源接口内嵌安装音箱本体内,开关内嵌安装在音箱本体内,音频接口内嵌安装在音箱本体内,控制键内嵌安装在音箱本体内部,控制电路板安装在音箱本体内部,锂电池安装在音箱本体内部,扬声器安装在音箱本体内部,时钟控制电路板内嵌安装在音箱本体内部,指南针内嵌安装在音箱本体顶部,本发明的产品使用和携带方便;可方便查看时间及辨别方位。
中冶有色为您提供最新的江苏有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!