本发明涉及锂电池制造技术领域,具体地说是一种效率高、安全性好的锂电池电解液及新型锂离子电池,包括锂盐、添加剂以及用于溶解锂盐的有机溶剂,其特征在于所述有机溶剂占电解液重量比为80%‐89%,包括以下各组分:碳酸亚乙酯DEC、碳酸二甲酯DMC、乙酸乙酯EC、碳酸甲乙酯EMC、碳酸丙烯酯PC;添加剂包括占电解液重量比为0.15%‐1.6%的乙二胺四乙酸二钠,占电解液重量比为1.12%‐1.5%的1,3‐丙磺酸内酯PS,占电解液重量比为1.8%‐2.5%的阻燃剂,本发明与现有技术相比,具有效率高、安全性好等显著的优点。
本发明公开了一种通过混合酸从含锂粘土中分步提锂的方法,包括步骤:S1、将含锂粘土进行破碎筛分成矿粉;S2、将含锂粘土矿粉和混合酸充分混合;S3、将步骤S2的混合物在50~150℃温度下浸出反应;S4、将步骤S3的产物进行固液分离,得到含锂的滤液。本发明以含锂粘土为原料,采用无焙烧,在低温混合酸条件下直接酸浸提锂,方法工艺简单,可操作性强,生产成本低,突破了耗能高的工艺短板。
本发明涉及电池技术领域,具体提供一种用于锂离子电池的负压化成装置、锂离子电池和车辆,旨在解决现有锂离子电池不便于进行负压化成操作的问题。为此目的,本发明的负压化成装置包括探针组件和负压吸气组件,探针组件用于连接锂离子电池的极柱;负压吸气组件包括负压吸嘴以及从负压吸嘴的外沿水平延伸的操作部,操作部与探针组件以可拆卸的方式连接,负压吸嘴用于连通锂离子电池的注液孔,通过探针组件能够使得负压吸嘴很好地连通锂离子电池的注液孔,而且探针组件和负压吸气组件构成一体式结构,一体式结构更加紧凑,能够适应多种尺寸注液孔在极柱中心的锂离子电池,便于进行负压化成操作;通过操作部还可以安装、拆卸负压吸嘴,简化组装工艺。
本发明提供了一种锂离子电池用石墨/钛酸锂复合负极材料及制备方法,所述石墨/钛酸锂负极材料为在石墨类材料颗粒表面形成钛酸锂和有机裂解碳包覆层,形成以石墨类材料为内核、以钛酸锂与有机裂解碳包覆层为外壳结构的复合材料;其制备方法包括以下步骤:(1)将石墨类材料、钛酸锂、有机裂解碳碳源按照100:1‑10:1‑5的质量比加入至无机溶剂或有机溶剂中,混合,干燥;(2)将所得复合材料在惰性气体氛围保护下以1‑20℃/min的速率升温至600‑1050℃进行烧结,并保温1‑10h,即得;本发明中的石墨/钛酸锂复合负极材料可有效提高石墨类负极材料的安全性、倍率性能、循环性能和高低温性能,同时制备方法工艺简单可控、成本低廉,易于批量化工业生产。
本发明公开了一种锂离子电池极片卷对卷预锂化方法及装置,卷对卷预锂化方法首先是在低湿环境下,将放卷装置上的负极极片在一定时间内通过溶解有锂金属的有机溶液,然后一定时间内再通过纯的有机溶剂,最后经干燥后收卷于收卷装置上即可;溶解有锂金属的有机溶液为有机溶剂中溶解有锂金属和具有共轭大π键的有机化合物。本发明为液相的预锂化方法,大大提高了预锂化过程的一致性,并且在电芯制作中避免了直接使用锂金属,避免了制作过程中因使用锂金属而带来的安全问题。同时由于没有直接使用锂金属,减少了因预锂化所带来的各种副产物(如碳酸锂、氢氧化锂等)。本发明操作过程简单,适合于工业化生产。
本发明公开了一种锂离子电池正极补锂添加剂及其制备方法与应用,涉及锂离子电池技术领域,包括以下步骤:向氧化石墨烯分散液中加入钴盐,搅拌溶解,得悬浊液;将尿素水溶液滴加至悬浊液中,搅拌,将所得溶液转移至水热釜中进行水热反应;将水热反应产物经离心、干燥处理后,再进行煅烧,得石墨烯和纳米四氧化三钴的复合物,即rGO@Co3O4复合物;在惰性气氛下,将rGO@Co3O4复合物与稳定化锂金属粉末混合、烧结,即得预锂化试剂rGO@Co/Li2O复合物。本发明制备了一种基于转化反应的rGO@Li2O/Co纳米复合物,Li2O/Co作为纳米颗粒可以附着在石墨烯表面,提高导电性,同时该纳米复合物具有较高的理论容量,补锂性能优异,可以弥补首次充放电过程中因SEI膜形成而造成的不可逆Li+的损失。
本实用新型公开了一种锂金属电池纯锂负极极耳组装结构。所述锂金属电池纯锂负极极耳组装结构包括两个以上锂极片以及与锂极片连接的负极极耳,所述负极极耳包括至少一第二极耳以及两个以上的第一极耳,所述第一极耳与锂极片连接,所述第二极耳连接设置在相邻两个第一极耳之间。本实用新型采用镍极耳与锂负极片压合的组装方法,有效解决了因金属锂的粘性导致而不能直接与镍极耳进行超声波焊接的问题。
本发明公开了一种锂电池用具有散热功能的锂电池装置,包括外壳、顶盖和内壳,外壳正面对称设置有出风仓和入风仓,出风仓内部设有排风扇,入风仓内部设有吸风扇,顶盖对称设置有正极接头和负极接头,正极接头和负极接头均设置有电线插入孔,顶盖嵌入设置有电量显示屏,内壳上端设置有正极柱和负极柱,正极柱和负极柱之间设有热管,热管内部设有蒸发段和冷凝段,热管内部填充有酒精,散热腔内部填充有导热油,散热腔和内壳底部设置有支撑板,外壳背面设置有散热板,通过设置出风仓、入风仓、热管、散热腔和散热板,有效的对电池内部进行散热,通过设置电量显示屏,实时的将锂电池电量显示出来,便于使用者对于锂电池电量的把控,提前充电。
本发明公开了一种锂离子电池正极浆料及制备方法和锂离子电池正极片,其由正极活性物质、粘结剂、导电剂和溶剂制成,所述正极浆料中包括添加剂,所述添加剂为聚磷腈添加剂[NP(Ph)F]n,所述导电剂为超导炭黑与碳纳米管的混合。将传统粘结剂与新型添加剂联用,对极片柔韧性具有明显提升,浆料制作同时采用复合导电剂,纳米碳管与超导炭黑(线与点)的复合,使得极片在高堆积密度时具有更好的电子传输通道循环性能更佳。
本发明公开了一种四氧化三钴/石墨烯纳米复合材料及其制备方法、锂离子电池负极、锂离子电池,复合材料由基材石墨烯以及在石墨烯表面原位生长成的四氧化三钴纳米线组成,复合材料整体呈三维多孔结构,合成的石墨烯/过渡金属氧化物纳米复合材料中充分利用石墨烯和过渡金属氧化物相结合的优点,克服各自的缺点,取长补短,从而改善了复合材料的性能。制备方法工艺简单、绿色环保、成本低。复合材料作为锂离子电池负极材料,有效提高了锂离子电池的性能。
本实用新型涉及电池技术领域,具体提供一种用于锂离子电池的盖板组件、锂离子电池和车辆,旨在解决现有锂离子电池空间利用率低的问题。为此目的,本实用新型的盖板组件包括盖板本体、正极极柱、正极连接片和负极连接片,正极极柱设置在盖板本体上,正极极柱通过正极连接片与锂离子电池的正极极耳连接;负极连接片设置在盖板本体的下方,负极连接片与锂离子电池的负极极耳连接,且盖板本体通过锂离子电池的壳体与负极连接片连接,实现锂离子电池的正极耳和负极极耳的电流的同一侧引出,提升了锂离子电池的装配空间利用率,降低了锂离子电池的正极极耳和负极极耳的总高度,进一步提升了锂离子电池整体的空间利用率。
本发明公开了一种高镍三元/硅碳体系的锂离子电池电解液及锂离子电池,涉及锂离子电池技术领域,所述电解液包括以下组分:锂盐、有机溶剂、成膜添加剂和磷酸酯类添加剂;所述磷酸酯类添加剂的结构式为:本发明通过向电解液中添加磷酸酯类添加剂,在电池化成过程中能够在正极和负极生成结构致密稳定的钝化膜,正极成膜能够抑制正极材料中的过渡金属溶出,减少不可逆容量损失;同时硅负极反应生成有机‑无机复合柔性钝化膜,抑制循环过程中硅颗粒膨胀导致的电解液持续消耗,降低界面阻抗,进而提高高镍三元/硅碳体系锂离子电池的循环稳定性。
本发明公开一种锂离子电池正极材料钒酸锂的合成方法,包括以下步骤:将锂源材料进行干燥后,通过原子沉积技术得到表面钝化的锂源基底;再将由偏钒酸铵和氧气反应得到的五氧化二钒循环沉积在钝化的锂源基底上,从而得到的前驱体A;前驱体A经预烧、洗涤、抽滤、干燥后得到前驱体C;最后前驱体C在保护气氛下烧结得到钒酸锂正极材料。本发明通过原子沉积技术得到的前驱体,再通过高温固相法烧结得到的钒酸锂正极材料,具有结晶度高,结构稳定的特点,制作的钒酸锂正极材料具有良好的倍率性能和循环性能。
本发明涉及一种充电宝用锂聚合物电池的掺锰的锂钴氧化物的制备方法,采用共沉淀法,将一定摩尔浓度的锂盐和钴盐与锰盐按照一定比例配比,在一定温度、流量、PH值、搅拌速度等条件下和存在有缓冲剂的混合物的体系下,与沉淀剂进行化学沉淀反应,从而形成氢氧化钴、氢氧化锂、氢氧化锰的原子级均匀混合物而沉淀,然后通过低温脱水,高温重构,形成了掺锰的锂钴氧化物,这样所制成的锂聚合物电池正极的电性能优,放电平台不容易衰减,耐大电流充放和过充放,使用寿命长。该锂聚合物电池适用于高容量的快速移动充电电源。
本发明涉及新能源汽车技术领域,且公开了一种新能源汽车用锂电池组,包括单体电池,所述单体电池的两侧和底部均固定安装有加热板,所述加热板靠近单体电池负极电连接有温控开关,所述加热板和温控开关串联且与单体电池负极电连接,所述单体电池的背面固定安装有电箱。该新能源汽车用锂电池组,通过在低温条件下电池内部电阻大而加热板的电阻较电池电阻小,使得电流从加热板处通过并能在到达指定温度后自动断路,使得温度较低时进行较慢充电的过程中,先使加热板温度提高加热单体电池,提高单体电池内部电解液的流动性,使得低温条件下离子流动性增强,提高单体电池的充电效率,使得单体电池获得适宜温度下的电容量。
本发明提供一种掺杂铌元素的锂离子电池负极材料及其制备方法,属于锂离子电池负极材料技术领域。该负极材料的化学式为:Li4Ti5-xNbxO12,其中x=0.05,0.1,是由锂源、TiO2和铌源混合制备而成,其制备方法是:将铌源、TiO2和锂源混合,在球磨机中研磨6-10个小时,接着将研磨所得混合物放入马弗炉中,在800-900℃下反应16-24小时,随后自然冷却到室温,即制得Li4Ti5-xNbxO12。本发明具有原料来源广泛、操作简便、可控性好、重现性高,避免了使用有机螯合剂,所得到的材料颗粒较小、粒径分布均匀、结晶度高,从而在降低材料制备成本的同时,提高了材料的电化学性能。
本发明公开一种表面低锂离子含量的锂离子电池正极材料,其特征在于:其由纳米氧化物和Lix(NiaCobMnc)O2粉体按质量比为2‑12:1000经混合、烧结制得正极材料,所述正极材料的表面游离锂含量在1800ppm以下。本发明通过水洗和氧化物表面包覆改性来降低表面残碱含量,控制材料表面游离锂含量,同时能够稳定材料的晶体结构,提高材料循环稳定性及安全性能。本发明整个工艺流程简单,在水洗降残碱的过程中同步进行液相包覆方法,简化了工艺流程,同时液相包覆均匀性更好,易于规模化生产。
本发明公开了一种用作锂电池阳极的SnO& MoS2复合材料的制备方法,包括步骤如下:将0.3‑0.5g的Sncl4·2H2O溶于20ml去离子水,超声搅拌1‑2小时;形成第一溶胶;将0.3g的Na2MoO4及0.5g的NH2CSNH2加入30ml的去离子水中,并加入1‑2g的分散剂C6H8O6Na,搅拌形成悬浊液;将上述第一溶胶缓慢加入该悬浊液,混合搅拌;然后将混合溶液置于高压釜中,加热至180‑200℃并保温20‑24小时,自然冷却;之后取出过滤、然后去离子水和乙醇反复清洗,然后干燥箱中70‑80℃烘干12‑15小时;然后置于炉管中,通入氢气/氩气混合气体,700℃‑800℃退火2‑3小时后,自然冷却至室温;然后在4M的HCl溶液中进行10‑12小时腐蚀清洗、去离子水及乙醇反复清洗,得到SnO& MoS2复合材料。本发明制得的SnO& MoS2复合材料,作为锂电池阳极材料时,电池能量密度达到900mAh/g。
本发明公开了一种锆掺杂改性的氧化镍钴锰锂/钛酸锂复合正极材料。该正极材料首先用共沉淀法合成锆掺杂的氧化镍钴锰锂正极材料,然后采用钛酸锂活性电极材料对三元材料进行包覆。一方面可以提高电子电导率和离子电导率,提高电池的输出功率密度,而且还可以提高三元材料的结构稳定性。另一方面,通过包覆可以综合两种材料的优点,从而得到循环性较好、容量较高、能量密度较大的复合正极材料。
本发明公开了一种钪掺杂镍锰酸锂锂离子电池正极材料及其制备方法,制备方法包括以下步骤:将可溶性锂源、可溶性镍源、可溶性锰源、可溶性钪源和有机酸铵与水混合,配成混合溶液;将混合溶液搅拌蒸干得到凝胶;将凝胶进行干燥得到干燥凝胶;将干燥凝胶以2‑10℃/min的升温速率升温至300‑400℃,进行一次烧结3‑5h,随后以1‑3℃/min的升温速率升温至820‑900℃,进行二次烧结12‑20h,冷却、研磨、过筛,得到所述钪掺杂镍锰酸锂锂离子电池正极材料。本发明钪掺杂镍锰酸锂锂离子电池正极材料的制备方法,过程简单便捷,得到的正极材料放电比容量高,循环及倍率性能好,与电解液的界面膜阻抗小。
本发明公开一种磷酸铁锂/碳包覆的核壳型磷酸锰铁锂复合正极材料,其组成通式为LiMnxFe1?xPO4/LiMnyFe1?yPO4/LiFePO4/C,其中,核材料的组成通式为:LiMnxFe1?xPO4,壳层材料的组成通式为LiMnyFe1?yPO4,包覆层材料的组成通式为LiFePO4/C,并且,0.8≤x≤0.9,0.2≤y≤0.4,同时,核材料所占重量百分数为60~80%,壳层材料所占重量百分数为15~30%,包覆层材料中磷酸铁锂所占重量百分数为3~7%,包覆层材料中碳所占重量百分数为2~3%。本发明采用共沉淀法与水热法相结合得到核壳型磷酸锰铁锂粒子,再与锂源、铁源、磷源、碳源混合后进行水热反应得到目标产物。采用本发明方法制得的产品颗粒球形形貌规则,并且极大程度地降低了正极材料中锰的溶解,电池的循环性能得到大幅度提升。
本发明涉及一种花状三氧化二铁纳米材料及其制备方法、锂离子电池负极及锂离子电池。花状三氧化二铁纳米材料由三氧化二铁纳米片组成的微纳米花构成,纳米片的厚度为5?10nm,微纳米花的直径为1.0?2.5微米,纳米材料的比表面积为57.8?95.6m2·g?1。制备方法步骤包括制备立方块状羟基锡酸铁前驱体、将前驱体转化处理、焙烧。本发明方法制备的微纳米花状三氧化二铁产品为红色粉体,属于菱方晶系,纯度高,比表面积大,作为锂电池负极材料与电解液接触充分,在嵌锂和脱锂反应过程中能显著缓解体积膨胀和收缩。产品质量好,性能稳定。
本发明提供一种富锂材料及其制备方法、含该材料的锂离子电池,属于锂离子电池技术领域,其可解决现有的0.5Li2MnO3·0.5LiNi0.5Mn0.5O2正极材料和由其制备的锂离子电池的比容量、循环性能低下问题。本发明的0.5Li2MnO3·0.5LiNi0.5Mn0.5O2材料的制备方法包括共沉淀制备镍锰前驱体步骤、混料粉碎步骤、固相合成步骤。本发明通过选取适当的工艺参数获得了性能优良的镍锰前驱体并得到性能较好的富锂材料,从而使富锂材料和由其制备的锂离子电池的比容量和循环性能得到较大提高。本发明的富锂材料是由上述方法制备的。本发明的锂离子电池包括上述富锂材料。
本发明公开了一种从废旧磷酸铁锂电池中回收锂的方法,包括:将废旧磷酸铁锂电池拆解去壳,再对所得的电池卷芯粉碎、机械分离,得到粉料;在空气中进行煅烧,除去粉料中的碳;加入碱液中进行化学反应,对产物进行过滤得氢氧化铝沉淀物和滤泥;向滤泥中加入水并搅拌均匀后,再加入强酸进行反应,过滤得锂溶液;调节锂溶液pH,用萃取剂萃取锂溶液中少量的铁,保留萃取后的水相;调节水相pH,加入磷酸钠固体得到磷酸锂沉淀。本发明的锂以磷酸锂的形式回收,回收工艺简单,对电池卷芯进行直接处理,处理工艺效率高,适用大规模的工业生产。
本发明提供了一种用于锂‑硫电池的碳包覆硫化锂复合电极及其制备方法,该制备方法包括如下步骤:首先在微米或纳米级的硫酸锂颗粒表面包覆一层聚合物,制备出核壳结构的硫酸锂@聚合物复合材料;然后将其与导电剂和粘结剂混合调浆,涂覆在三维多孔导电基体上,得到硫酸锂@聚合物复合电极;最后对硫酸锂@聚合物复合电极进行热处理,直接制备出碳包覆硫化锂复合电极。本发明的制备方法一步直接实现硫化锂纳米粒子的合成及其可控碳包覆以及碳包覆硫化锂复合电极的制备,从而有效抑制多硫化锂的溶解和穿梭效应,提高硫化锂电极的导电性和稳定性。
本发明公开了一种以硅基材料为负极材料的锂离子电池用电解液及锂离子电池,该电解液包括:锂盐、非水有机溶剂、成膜添加剂,其中,所述非水有机溶剂包括碳酸乙烯酯,所述成膜添加剂包括三(五氟苯基)硼烷。该电解液中的TPFPB作为SEI膜的成膜添加剂,有助于在负极材料表面形成稳定完整的SEI膜,减弱硅基材料作为负极材料时的硅的体积效应引起的粉化现象,且TPFPB会通过SEI膜释放出来自由移动的锂离子,这样就会抵消掉SEI膜的形成过程中消耗的部分锂离子,减少锂离子消耗,提高充放电效率和循环性能。且TPFPB的结构特点决定了其自身比较稳定不容易分解,提高了电解液的寿命。
本实用新型公开了一种锂离子动力蓄电池模组固定架及锂离子动力蓄电池组总成,其中,该锂离子动力蓄电池模组固定架包括主体、拉杆和线束固定座;其中,主体上设置有拉杆孔,拉杆与拉杆孔配合;线束固定座固定设置在主体上。本实用新型提供的锂离子动力蓄电池模组固定架及锂离子动力蓄电池组总成,实现了电池组的轻量化,提高了对电池模组的固定强度;同时,通过线束固定座的设计,实现了对电池组上线束的固定管理,保证了电池系统的安全性。
本实用新型涉及电池技术领域,具体提供一种锂电池电芯浸润装置及锂电池制造系统,本实用新型的锂电池电芯浸润装置包括:电芯浸润装置本体,电芯浸润装置本体设置有电解液容纳腔,且电芯浸润装置本体上设置有至少一个用于限位锂电池电芯的第一开口,以使得锂电池电芯通过第一开口限位后进入电芯浸润装置本体的电解液容纳腔内。通过利用第一开口对锂电池电芯限位,可将电芯直接浸润在电解液中,实现快速、充分地浸润,且通过第一开口对锂电池电芯限位能够实现对锂电池电芯的灵活拿取以及固定,并保证电芯顶盖不被电解液污染,此外该装置结构简单,能够将浸润工序和注液工序结合,有利于提高浸润效率并降低了注液以及浸润的成本。
本实用新型公开了一种钛酸锂生产用钛白粉和碳酸锂混合物的二次研磨机构,涉及钛酸锂生产技术领域。该钛酸锂生产用钛白粉和碳酸锂混合物的二次研磨机构,包括外壳和入料软管,所述外壳底部的两侧均设置有出料电控阀门,所述外壳内开设有施压腔,所述施压腔内腔的顶部固定设置有伸缩杆。该钛酸锂生产用钛白粉和碳酸锂混合物的二次研磨机构,通过使用多个空腔和通道的结构,实现在加料过程中逐渐进行研磨和出料操作(而非现有技术中的,先将原料全部加入,再进行混合,混合后再出料),可以很好的在保证研磨效果的前提下提高工作效率,避免了由于单次加料过多或过少而导致的研磨效果不佳或研磨效率低下,有利于机械化生产的进行。
本发明提供一种锂离子电池负极极片预锂化的方法及装置,其方法是先在惰性气氛条件下,将负极极片和金属锂片依次间隔地浸于电解液中,使负极极片和金属锂片一一对应但不接触;再将负极极片和金属锂片分别通过导线与电源正、负极连接,对负极极片进行充电,其充电电流为0.05~2.0C;取出负极极片并进行干燥,即得预锂化的负极极片。本发明使用“湿法预锂化”,成本低、生产安全性高;且可对电极极片均匀的预锂化,提高电池的首次效率和能量密度。
中冶有色为您提供最新的安徽有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!