本发明属于节能系统及方法,现有空分系统中使用溴化锂机组,存在能源利用不充分的技术问题,提供一种基于空分系统的节能系统及方法,节能系统包括空分系统溴化锂机组、空冷塔、水浴式汽化器和雨水回收池;空分系统溴化锂机组的热源入口连接外部热能;外部热能经空分系统溴化锂机组冷却后形成蒸汽冷凝水,输送至水浴式汽化器作为其热介质,与水浴式汽化器内的低温液态气体换热后进入雨水回收池;雨水回收池与外部的循环水系统相连通;空分系统溴化锂机组产生的冷冻水输送至空冷塔,作为空冷塔的冷却介质,换热后回送至空分系统溴化锂机组作为其补充的循环水介质。节能方法是基于上述节能系统对能源进行利用。
本发明涉及一种碳@Fe2O3@碳微球复合材料及其应用,所述碳@Fe2O3@碳微球复合材料由正硅酸四乙酯,氨水,间苯二酚,甲醛,铁盐和多巴胺制备而成,制备出的碳@Fe2O3@碳微球直径为200~300 nm,所述微球碳内壳厚度约为15~30nm,所述的Fe2O3中间层厚度为30~60nm,所述碳外壳的厚度为3~7nm;所述碳@Fe2O3@碳微球纳米复合材料用作锂离子电池的负极材料。本发明的优点在于:本发明的碳@Fe2O3@碳微球材料应用于锂离子电池,极大改善了锂电池得容量保持率,而且工艺简单、重现性好、易于实施。
本发明实施例公开了一种硬碳复合材料,其以椰壳为原料,通过与偶联剂、碳酸氢钠和催化剂混合并热解后制得多孔硬碳前驱体,将Li2O粉末和Ag粉末混合球磨得到补锂添加剂,以补锂添加剂的悬浊液与多孔硬碳前驱体混合,喷雾干燥,碳化,得到补锂添加剂的软碳包覆硬碳复合材料。本发明制备的硬碳复合材料作为电池负极材料,硬碳在碳酸氢钠热解、偶联剂、催化剂与生物质作用下,形成比表面积高、结构稳定的材料,比容量高,阻抗低;外层包覆Li2O/Ag,进行材料表面补锂,提升材料的首次效率,提升氧化锂的电子导电性,并提升功率性能,并可通过调整补锂添加剂的组成及与硬碳的比例灵活调整材料的性能。
本发明公开了一种X射线荧光光谱法用铜精矿熔融制片方法,在铂金坩埚中用四硼酸锂、偏硼酸锂混合熔剂垫底,再依次称入碳酸钠、二氧化硅、硝酸锂和铜精矿样品,将碳酸钠、二氧化硅、硝酸锂和铜精矿样品搅匀,盖上四硼酸锂、偏硼酸锂混合熔剂,置于600℃马弗炉中15分钟,取出后用熔样炉800℃熔融,加入脱模剂并充分摇匀,倒入模具,冷却后取出,得到试样试料片。本发明保证了铜精矿中的硫能够稳定的留存在试片中而不会在制备过程中因高温散失。本方法适用于铜精矿中铜、硫、铅、锌、锰、砷、铁、硅、铝、镁、钙等元素含量的测定。
一种太阳能路灯,涉照明设备领域。包括空心的灯杆、充放电控制器以及安装在电池盒内的锂电池,电池盒包括采用镁铝合金材料制成的盒体以及盖合在盒体上、并采用柔性材料制成的盒盖,盒盖和盒体的周向分别设置有外翻边,盒盖上还设置有用于将盒盖和盒体的外翻边压紧的压紧件,压紧件和盒盖、盒体的外翻边之间通过第一螺栓固定;盒体内设置有锂电池,锂电池的两侧与盒体之间通过截面呈L形的导热隔板分隔为封闭的加热腔,加热腔内分别设置有直流电加热管。本实用新型在不适合锂电池工作的低温环境条件下,通过加热锂电池,使锂电池能够处于更佳的工作温度,从而提升锂电的使用性能,保证锂电池的使用寿命。
本实用新型公开一种壳体固定底座,包括底座本体、锂电池、电机、变速箱、锂电池接口、电源输入口、遥感对码按钮、外部故障灯、电源开关,所述底座本体底座左侧装有锂电池槽,所述锂电池右侧装有电机,所述电机右侧装有变速箱,所述锂电池通过线缆与锂电池接口连接,所述电机、变速箱通过线缆与电源输入口连接,所述电源输出口与电源开关连接,所述底座本体前方装有输出轴,本实用新型结构简单,通过增加锂电池、电机、变速箱等仪器设备,增加整个底座的功能性,底座可以把功能组件装入里面,不显露在外器结构更加美观。
本发明公开了新能源汽车电池结构技术领域的一种新能源汽车动力电池渐变式加热片,包括底座,所述底座的前端设置有前固定板,所述底座的后端设置有后固定板,所述底座的顶部前端设置有前安装板,所述底座的顶部后端设置有后安装板,所述前安装板与后安装板之间设置有加热片,所述加热片的顶部设置有锂电池组,所述加热片与锂电池组之间设置有缓冲件,缓冲件能够对锂电池组和加热片安装过程起到缓冲保护作用,同时也能使加热片与锂电池组进行直接的接触,避免加热片的直接对锂电池组进行加热,使加热片高温造成锂电池组的损坏。
本发明涉及纳米阀门封装的硫介孔二氧化硅复合材料的制备方法,第一步采用“模板法”制备介孔二氧化硅载体;第二步采用有机硅烷链分子对介孔二氧化硅经过表面改性;第三步采用真空热处理法将单质硫注入介孔二氧化硅的孔道中或空腔中;第四步再采用α-环糊精作为纳米阀门,封闭介孔二氧化硅的孔口。本发明将这种复合材料应用于锂硫电池,利用介孔二氧化硅的高比表面积,解决目前存在的锂硫电池正极复合材料中硫含量较低的问题,并抑制硫在充放电过程中的体积膨胀,同时纳米阀门的引入可以抑制多硫化物的溶解,提高了锂硫电池的循环稳定性。
本发明涉及一种由硫化锡纳米线作为锂离子电池负极材料,属于锂离子电池材料领域,特别是涉及一种低温合成硫化锡纳米线的方法及应用。本申请采用一锅法、低温合成,所需设备简单,反应条件温和,简单易行,成本低,易于实现工业化生产。本发明所制得的硫化锡纳米线主要应用于锂离子电池、超级电容器、太阳能电池等方面,因此,它具有前打的市场前景以及发展潜力。
本发明属于甲醇羰基化反应制备醋酸的领域,具体涉及一种甲醇羰基化合成醋酸的催化剂体系及其应用。本发明公布了一种甲醇羰基化合成醋酸的催化剂体系,包括活性铑、氢碘酸或单质碘、碘甲烷、水、醋酸锂水剂以及醋酸,其中,活性铑在整个反应体系中质量百分数为800-1000ppm,总碘在整个反应体系中的含量为2.8-3.5mol/L, 醋酸锂水剂中锂离子在整个反应体系中的质量百分数为8000-12000ppm,碘甲烷在整个反应体系中的质量百分数为:8%—13%,水在整个反应体系中的质量百分数为2%,醋酸在整个反应体系中的质量百分数为:57%—62%。采用此催化剂体系可以在较低的压力下,高速的将甲醇转化为醋酸,从而使得醋酸生产成本低,配方简单,生产过程容易,并且副产物CO2、H2和丙酸大幅度减少。
本发明涉及一种阻燃型润滑脂及其制备方法,特征是:包含以下工艺步骤:先将基础油与无机稠化剂加入开口反应釜搅拌混合,升温加入分散剂,升温出炉备用;然后将脂肪酸钙皂和基础油混合,升温加入脂肪酸锂皂,保温脱水,炼制,再将物料移至中间釜,冷却降温,与无机稠化剂制成的润滑脂混合搅拌,加入抗氧剂、阻燃剂、防锈剂,均化,过滤后成为成品。本发明的润滑脂既保持了原有通用锂基脂的各项优异性能,而且突出增加了600℃热板不燃烧的阻燃性,经对其性能评定显示,具有优良的机械安定性、抗水性、润滑性、防锈性、阻燃性,将会有更长的使用寿命,而且成本低,可以替代目前煤矿、地铁、冶金等使用的通用锂基润滑脂。
本发明涉及一种改性正极材料及其制备方法和用途,所述方法包括采用有机酸锂盐和/或无机酸锂盐与有机还原剂的混合物作为改性剂,将其与高镍正极材料混合,之后经热处理得到改性正极材料,本发明所述方法能明显提高改性正极材料表面的Ni2+和Mn4+的含量,使得到的改性正极材料的表面具有更高的稳定性,且由其制备得到的锂离子电池的循环性能及高温储存容量保持率均得到显著改善。
本申请涉及一种主从电机的控制保护模块,包括单片机U1、6节锂电池保护IC芯片U2、充电MOS开关电路、主放电MOS开关电路、从放电MOS开关电路,以及锂电池组电压采样电路;锂电池保护IC芯片U2的充电保护引脚CO和放电保护引脚DO分别连接单片机U1;单片机U1驱动连接充电MOS开关电路、主/从放电MOS开关电路,实现锂电池组的过充/过放保护;所述锂电池组电压采样电路包括串联连接的电压采样电阻R26和R27,单片机U1用于在U2故障的情况下,根据锂电池组电压采样电路采集的锂电池组的充放电电压,触发充电MOS开关电路或主放电MOS开关电路、从放电MOS开关电路动作。
本实用新型公开了一种数字轨道胶轮车备用电源系统,包括电池管理系统,连接有锂电池组,锂电池组正极输出端子和负极输出端子分别接入数字轨道胶轮车正负极;锂电池组的正极输出端子和数字轨道胶轮车的正极之间安装有熔断器一和放电霍尔传感器,锂电池组的负极输出端子和数字轨道胶轮车的负极之间安装有继电器二;电池管理系统上还连接有充电机,充电机的正负极分别和锂电池组的正负极连接,充电机正极和锂电池组正极之间安装有熔断器二、充电霍尔传感器和二极管,充电机负极和锂电池组负极之间安装有继电器一;充电霍尔传感器和放电霍尔传感器的信号线均与电池管理系统连接。本实用新型的优点:无污染、轻量化、寿命长且安全性、可靠性较高。
本发明涉及一种固体电解质及其制备方法和应用,所述固体电解质为Li7‑xPS6‑xMx,其中,0<x≤2,M为卤素原子。本发明所述固体电解质的锂离子电导率较高,原因在于卤素提供了锂离子传输的多维通道,增加了锂离子的活动空间,导致了锂离子电导率的提高。当0<x≤2时,由于卤素元素的掺杂取代,拓宽了晶体的锂离子传输通道,所得固体电解质的锂离子电导率进一步得以提高。
本发明属于锂离子电池技术领域,具体涉及一种三氧化二钒负极材料的制备方法及应用。本发明制备三氧化二钒负极材料的方法具体如下:以钒酸铵化合物为前体物质,以硅片为载体,以锂片为还原剂,将上述物质置于坩埚内,于管式炉中煅烧后,自然冷却至室温,即得到V2O3负极材料。本发明的制备方法简单易行,生产成本低,安全系数高;制备得到的V2O3负极材料具有多级结构,并且材料形貌可控。此外,用制备的V2O3负极材料组装半电池,结果显示V2O3负极材料的比容量高、倍率性能好、循环性能稳定。本发明制备的V2O3材料作为负极材料用于生产锂离子电池,具有广阔的应用前景。
本发明提供了一种正极材料及其制备方法和用途。所述制备方法包括:将锰源、镍源和锂源混合,得到混合物,然后将混合物依次进行升温、降温和降温后的保温,得到所述正极材料;其中,所述锰源包括四氧化三锰和/或二氧化锰,所述镍源包括氧化镍,所述锂源包括碳酸锂和/或氢氧化锂。本发明通过对烧结温度曲线的改变,先升温再降温保温,使得正极材料中镍锰酸锂晶型的两种空间结构可以互相转换,既可以得到部分Mn3+从而提高材料的导电性,又可以获得有序型尖晶石型正极材料,提高了材料的结构稳定性,进而由其制备得到的锂离子电池可以同时提高倍率性能和循环稳定性能。
一种钛钴尖晶石的制备方法和用途,属于过渡金属尖晶石的制备方法和用途。钛钴尖晶石(Co2TiO4)纳米八面体结构材料的制备方法并将其用作锂离子电池负极材料,采取温和的液相合成技术制备得到钛酸钴纳米结构,调控反应过程中参数,实现对钛钴尖晶石纳米八面体结构材料的廉价、便利化合,并将其应用做锂离子电池负极材料;方法:将钛源和钴源分别配制溶液,并按摩尔比(1-5):1混合后搅拌均匀,置于密闭耐压反应容器中于100~250℃条件下,反应8-40小时;钛源和钴源配制溶液中加入碱助剂和糖类、胺类助剂。原料易得,合成方法简单,操作步骤可控性高,且所得产品为纯度高、粒径均一,较易于扩大生产。将该八面体用作锂离子电池负极材料,电化学性能优异。
大尺寸非极性面GAN自支撑衬底制备方法,在HVPE生长系统中将铝酸锂衬底放入反应器中后,先生长缓冲层。温度为500-800℃,然后升温至生长温度开始生长GAN,生长温度1000-1100℃。生长至合适的厚度后,停止生长;冷却后获得完整的自支撑GAN衬底,铝酸锂衬底自动分离。本发明利用了铝酸锂衬底和GAN之间的小的晶格失配来获得低位错密度的非极性面GAN薄膜;本发明方案充分利用两者之间大的热失配来使得二者相分离,无需按照一定降温速率降温,并且晶体质量明显改善,而且成品率高,采用本发明方案利于规模生产。
本发明公开一系列酰胺类稀土金属钆配合物的合成方法是在惰性气体N2或者Ar2保护下,等摩尔量的酰胺配体与正丁基锂在-78℃~0℃下,反应1~5小时,反应得到酰胺锂盐;三氯化钆和酰胺锂(物质的量比为1∶3)在无水有机溶剂中,反应12~70小时后,将得到的澄清反应液抽干,经有机低极性溶剂萃取,过滤,滤液浓缩,冷冻结晶得到配合物。该类配合物具有挥发性好,活性高,合成简单,产率高,成本低等优点,作为前驱体制备得到的高K材料薄膜致密和均匀,颗粒在20nm-40nm之间。
本发明公开了一种风光互补供电型电磁水表,包括太阳能电池组件、锂电池充放电保护板、锂电池组、智能控制单元以及电磁式水流量检测模块;所述太阳能电池组件与所述智能控制单元连接,为所述智能控制单元供电,所述太阳能电池组件通过所述锂电池充放电保护板与所述锂电池组连接,为所述锂电池组进行充电;所述锂电池充放电保护板与所述智能控制单元连接,为所述智能控制单元供电;所述智能控制单元与所述电磁式水流量检测模块通讯连接,用于检测水流量。本发明的电磁水表,绿色环保、安全可靠,续航能力强,维护成本极低,可使电磁式水表长时间运行,为户外水管水流量检测提供新型的检测方式。
本发明公开了一种基于电渗析的三元工质氨水吸收式制冷系统,包括电渗析装置(1)、溶液热交换器(2)、发生器(3)、冷凝器(4)、蒸发器(5)、吸收器(6)、溶液泵(7)、太阳能集热器(8)和太阳能光伏光热装置。所述电渗析装置(1)包括一个以上的高浓度溴化锂室,每两个高浓度溴化锂室之间设置有一个低浓度溴化锂室,所述低浓度溴化锂室与两侧的高浓度溴化锂室之间通过一对阴阳离子交换膜隔开。本发明通过电渗析装置将进入吸收器的稀氨水溶液中的溴化锂传递到进入发生器的浓氨水溶液中,溴化锂的转移不仅使氨水发生过程中水分迁移量减少,提高了发生效率,而且也使得氨水吸收过程得到强化,从而提高了系统的制冷效率,降低了能耗。
本发明公开一种达卢那韦关键中间体的制备方法,属于医药技术领域。该方法是以式Ⅰ的化合物为原料,在四氢呋喃中经硼氢化锂还原生成式Ⅲ的化合物;再与式Ⅴ的化合物进行酯交换反应,制得式Ⅵ的化合物。本发明通过优化制备硼氢化锂的投料方式,使硼氢化锂提供氢负离子,进攻酯羰基,氯化锂和硼氢化钾分开加更利于反应生成硼氢化锂,氯化锂在四氢呋喃中以Li+更易游离与BH4‑结合能力强,缩短了反应时间,大大提高了生产效率,适用于商业化运用。
本发明公开了一种硒化铜纳米颗粒局域表面等离激元的调控方法,其包括下述步骤:S1、制备Cu2‑xSe溶液,作为涂覆液;S2、将涂覆液涂覆在导电基板上,使Cu2‑xSe附着在导电基板上形成Cu2‑xSe膜;S3、以具有Cu2‑xSe膜的导电基板作为工作电极,以含锂溶液作为电解质,构建三电极体系;S4、将三电极体系电连接至电化学工作站上,以控制锂离子在Cu2‑xSe中的脱嵌,同时原位监测Cu2‑xSe膜在750nm~1500nm下的吸收值;在‑1.0V~‑1.2V下,锂离子嵌入至Cu2‑xSe内,LSPR消失,在‑0.4V~‑0.2V下,锂离子从Cu2‑xSe中脱出,LSPR恢复。根据本发明的调控方法,通过在还原电位下嵌入锂离子减少空穴载流子浓度,降低LSPR吸收直至消失,而在氧化电位下脱出锂离子,增加载流子浓度恢复LSPR,从而实现了对Cu2‑xSe的LSPR动态、精准和可逆调控。
本发明公开一种可控温的车载锂电池组,包括电池箱体及设置在其上方和下方的温度转换装置和调节液储备装置,温度转换装置和调节液储备装置之间通过管路连接,形成外部液体循环通道,电池箱体中设有锂电池单元,相邻锂电池单元之间夹设有调温单元,调温单元分别与温度转换装置和调节液储备装置管道连通,形成内部液体循环通道。与现有技术相比,本发明能根据环境温度的变化,将调节液储备装置中的换热介质泵入冷却室或加热室中进行冷却或加热后,导入调温单元中进行分配,再流回调节液储备装置中,重复循环完成对锂电池单元的工作温度的调节,提高使用安全性;锂电池单元改善了电池循环性能以及高倍率充放性能,提高了锂离子电池的容量和功率。
本发明涉及一种改良膨胀土及其制备方法、施工方法和应用,改良膨胀土包括质量百分比为12%~16%的锂渣,质量百分比为4%的碱,质量百分比为80%~84%的所需改良土体的膨胀土,改良膨胀土由锂渣、碱和膨胀土均匀混合而成。本发明中,在碱掺入的情况下利用废弃的锂渣来改良膨胀土,既节约了工程成本,又使锂渣得到再利用,保护了环境,又为减少膨胀土引起的工程灾害开拓了一个新的改良方法,废弃的锂渣作为粗骨料添加,可以起到骨架作用,并且还可以改善混合物级配,使得锂渣在膨胀土中均匀分布,具有优良的物理性能,属于物理改良方法,经改良后的膨胀土可以大大减弱其膨胀性,消除干湿循环带来的裂隙,提高了水稳定性,满足工程所需强度。
本发明涉及一种固定翼无人机及其工作方法,本无人机包括:充放电控制模块、与该充放电控制模块相连的燃料电池和锂电池,所述充放电控制模块由一处理器模块控制,即当处理器模块获得无人机上升或悬停指令,则所述处理器模块通过充放电控制模块控制燃料电池和锂电池同时对飞机动力系统进行供电;以及在巡航过程中,所述处理器模块通过充放电控制模块控制燃料电池对飞机动力系统进行供电,且同时通过燃料电池对锂电池进行充电;通过与充放电控制模块相连的燃料电池和锂电池,使无人机在上升或悬停时,燃料电池和锂电池协同工作,提高了起飞效率以及悬停稳定性,并且在巡航时,通过燃料电池对锂电池进行充电,提高了巡航里程。
本发明公开了一种基于双工质对的两级吸收式制冷循环系统及其制冷方法,该循环包括制冷工质循环回路,低压侧溴化锂溶液循环回路,高压侧氯化锂溶液循环回路。制冷工质从蒸发器出来进入低压侧吸收器被溴化锂溶液吸收,低压侧吸收器中的溴化锂稀溶液被泵入低压侧发生器,并在其中吸热产生中间压力下的工质蒸汽,工质进而进入高压侧吸收器被具有更高蒸汽压力的氯化锂盐溶液吸收,高压侧吸收器中的氯化锂稀溶液进入高压侧发生器吸热产生高压工质蒸汽,高压工质蒸汽进入冷凝器,在冷凝器中被冷却为液态,液态的工质经过节流进入蒸发器并在其中蒸发吸热输出冷量。本发明通过具有不同蒸汽压力的双吸收工质的串联连接降低了吸收式制冷系统驱动热源的温度至75℃以下,增大了低品位热能利用温区,提高了低品位热能的利用率,具有广阔的应用前景。
本实用新型公开一种应用于检票闸机的后备电源,包括:用于将市电转化为直流的直流电源,由若干锂电池组成的锂电池组,连接到所述直流电源的用电负载,其特征在于:还包括:串联的放电控制电路和充电控制电路位于所述直流电源和用电负载的接点与锂电池组之间,此放电控制电路用于将锂电池组的电能传输给用电负载,此充电控制电路用于将来自直流电源的电能传输给锂电池组;一中央处理单元控制所述放电控制电路的通断和充电控制电路的通断。本实用新型后备电源能防止充电时充电电流过大损坏锂电池组和直流电源;从而有效保护了锂电池组,并能在故障发生前及时更换电池,避免损失。
本发明涉及一种便携式无线解码接收器,其包括:锂电池、锂电池充电保护模块、锂电池放电保护模块、低电压提示模块、升压模块、解码芯片和无线接收模块,所述解码芯片和无线接收模块接收给定频段的编码信号并实现解码;所述锂电池分别连接锂电池充电保护模块、锂电池放电保护模块和低电压提示模块,并通过升压模块连接解码芯片模块和无线接收模块,所述解码芯片与无线接收模块相连。本发明可以通过普通锂电池为解码芯片及无线接收电路提供所需稳定工作的直流电源,结构简单,成本低,易实施,适用于各种便携式无线产品的解码接收器。
中冶有色为您提供最新的江苏有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!