本发明提出了一种Cu‑Zn‑ZnO复合材料及其制备方法和应用,涉及水体净化材料的技术领域。本发明的复合材料是在铜锌合金表面上直接生长有氧化锌一维纳米材料,包括以下重量百分含量的元素:Cu 49‑89%,Zn 9‑42%,O 2‑9%;本发明还给出了上述复合材料的制备方法,利用铜锌合金在高压消解罐中水热合成而得到;本发明的复合材料可用于洗衣机、热水器或净水器的净化杀菌装置中。本发明以铜锌合金为原料利用水热法一步合成了在铜锌合金表面上直接生长有氧化锌一维纳米材料的新型复合材料;该复合材料不仅具有去除余氯、重金属离子和硫化氢的功能,还可以有效的杀死细菌和病毒等微生物,功能全面,可以彻底净化水体。
本发明涉及一种将热塑性材料(10)和纤维复合材料(11)接合的方法,所述热塑性材料(10)焊接至所述纤维复合材料(11),其中所述纤维复合材料为纤维增强基体材料或包括纤维增强基体材料,其中所述基体材料为热固性材料或包括热固性材料。优选地,所述热塑性材料(10)和所述纤维复合材料(11)通过运动焊接和/或感应焊接在一起。另外,优选地,对于感应焊接,在热塑性材料和纤维复合材料之间的接合区域设置导电材料,从而在导电材料中产生感应热,使热塑性材料开始熔化而纤维复合材料被加热。
本发明公开了一种绢云母/二氧化硅复合材料及其制备方法,其特征在于所述的复合材料是以绢云母为核,纳米二氧化硅为壳的核壳结构形式的复合材料。其制备方法是在水溶液体系中,通过将表面改性后的绢云母与二氧化硅球混合并在一定温度下加热,得到一种核壳结构的复合材料。该技术使用的基体材料绢云母是天然矿物,原料易得,无污染且成本较低,制备过程简单安全可靠,易于实现控制,且产品质量稳定,所得到的复合材料在有机溶剂中具有良好的分散性,同时具有优异的抗紫外性能,可应用在涂料,化妆品等领域。在复合材料合成或其他相关科学领域具有很好的潜在应用价值。
一种纤维增强树脂基(Fiber?Reinforced?Plastic,FRP)复合材料R区超声检测模型建立方法,属于复合材料超声检测技术领域。该方法包括以下步骤:FRP复合材料R区试样几何尺寸和密度测量;对R区试样横截面解剖打磨并观察其微观组织,包括单铺层厚度、铺层总数及纤维铺放顺序;FRP复合材料单向板试样声速测量和弹性刚度矩阵反演计算;计算R区任意位置对应的Bond变换矩阵,并对弹性刚度矩阵进行旋转变换;设定超声检测探头参数和耦合介质的材料特性,完成模型建立。该方法在考虑FRP复合材料各向异性的同时,还实现了多层结构和曲面形状弹性特性的定量描述。利用该模型可对FRP复合材料R区超声检测进行模拟计算,为研究声传播规律、提高检测质量提供支持。
本发明公开了一种石墨烯/玻璃纤维增强尼龙复合材料,所述的石墨烯/玻璃纤维增强尼龙复合材料,包括以下组分重量份数的组分:尼龙60?90质量份、环氧树脂5?20质量份、石墨烯0.01?5质量份、玻璃纤维1?6质量份、硅烷偶联剂0.01?0.1质量份、乙醇1?2质量份、抗氧化剂0.05?2质量份、润滑剂0.5?3质量份。本发明还公开了上述石墨烯/玻璃纤维增强尼龙复合材料的制备方法。本发明所制备的石墨烯/玻璃纤维增强尼龙复合材料,不仅制备工艺简单,而且实验结果显示所制备的石墨烯/玻璃纤维增强尼龙复合材料的热稳定性、强度和韧性明显改善,而且有效的消除了浮纤现象,因而可扩大尼龙复合材料的实际应用。
本发明公开了一种磺胺喹恶啉钴镍纳米复合材料及其制备方法,本发明中将一定量的金属盐溶液加入到含有的磺胺喹恶啉有机配体中,在一定温度下搅拌,微波反应,超声分散经离心分离,洗涤,干燥制得相应的金属‑配体纳米复合材料,制备过程简单,成本低,适合大量生产;通过选用不同的溶剂,控制反应物的用量、反应时间和反应温度,实现磺胺喹恶啉钴镍纳米复合材料粒径的大小及分散性的有效调控。本发明制备的磺胺喹恶啉钴镍纳米复合材料是一种含有钴和镍的功能化复合材料,性能稳定,可用于催化C‑C键偶联反应,催化效率高,因此该磺胺喹恶啉钴镍纳米复合材料在催化领域具有广阔的应用前景。
本发明公开了一种提高炭/炭复合材料强度的方法,其特征在于:是在炭纤维和炭基体之间添加粘土/炭过渡层并一步热压,粘土/炭在热压过程中转变为陶瓷/炭,最终获得多相、多尺度的炭/炭-陶瓷/炭复合材料。本发明采用水热法,将生物质碳源碳化成纳米碳负载于粘土表面,形成粘土/炭纳米复合材料,再将此复合材料引入炭/炭复合材料中,以此达到在补强剂粘土和炭纤维及炭基体之间增加一炭过渡层的目的,从而改善炭/炭复合材料内的界面结合,提高了材料的强度。
本发明涉及碳纳米管/聚苯乙烯纳米导电复合材料的制备方法,它以聚苯乙烯和多壁碳纳米管为复合基体,以胆酸盐为分散介质,以有机溶剂为分散剂,通过溶液法制备获得。该方法制备工艺安全、简单,反应时间大大缩短,复合材料的电阻率可以通过调节胆酸盐浓度、复合基体、聚苯乙烯基体与碳纳米管的质量比来控制;本发明方法与共混法制备碳纳米管/聚苯乙烯纳米复合材料相比,由于胆酸盐溶液能够大量、有效的分散多壁碳纳米管,因此碳纳米管在复合材料中的分散性明显改善,解决了以往碳纳米管分散效率低的问题。本发明制得的复合材料的导电性也比共混法制备的复合材料的导电性高出几个数量级,相对于纯聚苯乙烯材料,电阻率更是降低了十几个数量级。
一种陶瓷颗粒局部定位增强耐磨复合材料的制造方法,其步骤是:先制作若干个多孔状硬质陶瓷颗粒预制体;然后将各多孔状硬质陶瓷颗粒预制体间隔地固定在砂模中的局部位置;最后将金属液浇铸到砂模中,待冷却后取出,得到耐磨复合材料;各多孔状硬质陶瓷颗粒预制体的制作方法为:先设计一个金属壳体,然后将硬质陶瓷颗粒填充到金属壳体内连同金属壳体一起制成多孔状硬质陶瓷颗粒预制体。通过本方法制造的耐磨复合材料,硬质陶瓷颗粒与金属基体的界面结合良好,结合强度高,使耐磨复合材料具有良好的耐磨性能和整体韧性,延长了耐磨复合材料的使用寿命,而且硬质陶瓷颗粒特别适合采用Al2O3或ZTA陶瓷颗粒,这样有利于降低耐磨复合材料的成本。
本发明涉及到一种具有非常优异的阻燃特性及极佳的可激光标记效果的可激光标识、无卤阻燃聚酰胺复合材料,该聚酰胺复合材料的特征在于它包含有下列物质:至少一种或者几种聚酰胺树脂,至少一种或者几种无机填充材料,至少一种或者几种可以提供复合材料优异阻燃性能的无卤阻燃剂,至少一种或者几种可提供复合材料优异可激光标识助剂,非必要的,组合物还可以包含如润滑剂、抗氧剂、颜料等其他助剂。该复合材料具有非常优异的耐温性能、阻燃性能、尺寸稳定性以及易于加工成型等综合性能,同时具有清晰、美观的激光标识效果。在家用产品、电子电器、激光手柄等领域有着非常广泛的应用,这种复合材料有着巨大的市场前景。
一种在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法,它涉及了一种在陶瓷复合材料表面原位生成的高抗氧化性能膜的方法。本发明解决了现有硼化锆-碳化硅陶瓷复合材料的抗氧化性能差、使用过程中质量损失大,无法将微弧氧化法应用到陶瓷表面的处理上。本发明在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法按如下步骤进行:一、混合,研磨;二、烧结;三、微弧氧化反应;即在硼化锆-碳化硅陶瓷复合材料表面原位生成了高抗氧化性能膜。本发明成功应用微弧氧化法在陶瓷材料表面制备了高抗氧化涂层,制备出涂层大大提高了硼化锆-碳化硅陶瓷复合材料的抗氧化性能,降低了材料使用过程中的质量损失。
本发明公开了一种透明高阻隔复合材料及其制备方法,复合材料包括透明保护层、阻隔层、抗菌层,保护层位于阻隔层外,对阻隔层起到保护作用,提高复合材料的耐气候性能及耐化学性能,在寒冷、高温高湿、高盐雾和海上等气候及高湿度、高盐浓度的环境中有效保持复合材料好的抗吸湿性、抗腐蚀性等;阻隔层提高复合材料的阻隔水蒸气、氧气性能,提高复合材料包装的抗吸湿性、抗氧化性、密封性能,延长包装内环境状态不变;抗菌层提高复合材料的抗菌性能,减少细菌在复合材料包装内的繁殖,保证复合材料包装在极端条件下的性能;本发明提供的透明高阻隔复合材料的制备方法简便。
本发明涉及储能复合材料技术,具体涉及储能复合材料、储能复合纤维及其制备方法。该储能复合纤维的制备方法包括:称取聚乙二醇、纺丝级聚丙烯、纳米二氧化钛;将纳米二氧化钛加入到熔融的聚乙二醇中得到二氧化钛乙二醇悬浮液;将悬浮液移入相变材料储罐,道输送至计量泵,由计量泵定量输送至喷丝组件;纺丝级聚丙烯与二氧化钛通过高速搅拌器混合后移入螺杆挤出机输送至计量泵,并由计量泵定量输送至喷丝组件;在140-190℃温度纺丝,自喷丝组件中获得储能复合材料原丝;对储能复合材料原丝牵伸得到储能复合纤维。本发明可实现储能材料的密封,防止储能材料的泄漏,提高储能复合材料的储能的可重复性和稳定性,储能量及纤维直径的可控性。
本发明公开了一种新型高透波热塑性复合材料预浸料的制作方法,包括复合材料预浸料,所述复合材料预浸料包括:增强纤维材料、聚四氟乙烯基体、增韧热塑性树脂,首先以聚四氟乙烯作为基体,将增强纤维材料通过热熔法制备成纤维/聚四氟乙烯复合材料,再将纤维/聚四氟乙烯复合材料与增韧热塑性树脂复合,制成高透波热塑性复合材料预浸料,本发明结构科学合理,使用安全方便,通过复合材料预浸料,复合材料预浸料包括如下材料组成:聚四氟乙烯、聚偏氟乙烯、玻璃纤维、石英纤维和芳纶纤维制备出高透波热塑性复合材料预浸料,提高了高透波性和热塑性,并且通过增韧剂塑性树脂进一步提高了其自身的热塑性,是一种新型的复合材料,适合推广使用。
本发明公开了一种实现整齐切割的复合材料结构火工分离装置,所述装置包括复合材料板、聚能切割索、缓冲套、保护罩,其中:所述复合材料板的外表面预留削弱槽,复合材料板的内表面一侧安装聚能切割索;所述削弱槽通过减少复合材料铺层数实现,铺层数需要递减或做成小台阶状并在表面铺设一层连续铺层;所述缓冲套包围在聚能切割索周围,缓冲套与复合材料板贴合面一侧留有凹槽,尺寸大小刚好放置聚能切割索;所述保护罩罩在缓冲套的外表面,保护罩的上边倚靠复合材料板凸起处以实现定位,保护罩的安装面与复合材料板通过固定螺栓连接。本发明使用的复合材料经过编织或Z‑PIN工艺增强提高整体性,从而降低切割后复合材料损伤。
本发明涉及一种储能飞轮复合材料转子的快速制备方法,该储能飞轮复合材料转子由铝合金轮毂(1)、钢圈(2)、玻璃纤维复合材料环(3)、碳纤维复合材料环(4)(根据需要选配)组成。铝合金轮毂(1)和钢圈(2)都是由锻造毛坯机加工而成,并经过过盈装配到一起,然后把金属转子放置到数控缠绕机上将预浸复合材料带(玻璃纤维预浸带或碳纤维预浸带)通过预张力进行缠绕,缠绕同时利用高能电子束(5)(紫外光或激光)轰击,使预浸复合材料带上的特殊配方树脂在线固化,最终得到复合材料层的抗拉强度高达1000‑3000Mpa。本发明主要解决了金属转子材料强度瓶颈和复合材料转子内圈金属材料与外圈复合材料之间应力、应变、固化温度等协调问题,不仅改善了飞轮复合材料转子的生产工艺,提高了生产效率,还有效的提高了储能飞轮的储能密度。
本发明公开了一种氮掺杂石墨烯‑硫堇‑金纳米复合材料、电化学传感器及其制备方法和应用,该氮掺杂石墨烯‑硫堇‑金纳米复合材料的制备方法,包括:将氮掺杂石墨烯NG、硫堇Thi、金源、还原剂在避光的条件下进行超声反应以制得氮掺杂石墨烯‑硫堇‑金纳米复合材料NG‑Thi‑AuNPs。基于该掺杂石墨烯‑硫堇‑金纳米复合材料的电化学传感器对DES和H2O2的检测具有优异的准确性、稳定性和灵敏性,同时该复合材料和电化学传感器制备方法均具有操作简单、成本低廉的优点。
本发明提供了一种铝基复合材料、其制备方法及其应用,该铝基复合材料包括铝基体及分布于所述铝基体中的NbB2增强相和NbAl3增强相。本发明提供的铝基复合材料中包括NbB2增强相和NbAl3增强相,它们弥散分布于铝基体中,NbB2增强相与铝基体界面间存在部分共格关系,NbB2增强相作为铝基体非均匀形核的异质形核核心,细化铝基体组织;NbAl3增强相与铝晶格系数相近,能够与铝基体很好地结合,使得铝基复合材料具有较高硬度和高温抗拉强度。另外,本发明提供的铝基复合材料延伸率良好和耐磨性优异。
本发明公开了一种弥散铜复合材料及其制备方法,属于弥散铜加工技术领域。弥散铜复合材料由以下质量百分数的组分组成:Al2O30.24~3.74%,Y2O30.03~1.27%,余量为Cu及不可避免的杂质。本发明以Cu2O粉末和Cu-Al-Y合金粉末为原料,经混料、压制、烧结内氧化、挤压、锻造制备弥散铜复合材料,该复合材料具有高强度和高导电性,强度在500Pa以上,电导率在80%IACS以上,克服了其他复合材料高强度与高导电不可兼得的缺陷,同时具有优良的抗软化性能,高温强度高,塑性好,软化温度在800℃以上。
本发明涉及一种二硒化钼/二氧化钛复合材料及其制备方法和应用;属于电池电极材料开发设计技术领域。本发明所设计的二硒化钼/二氧化钛复合材料中,二氧化钛与二硒化钼的摩尔比为2.1-2.3:1;所述二氧化钛以纳米带的形式分布于复合材料中,二硒化钼以纳米片的形式包覆在二氧化钛上。其制备方法为:本发明将含有Se的悬浮溶液A与含有二氧化钛纳米带、Mo源的悬浊液混合均匀,在190-210℃进行水热反应后固液分离,所得固体经清洗、干燥后在保护气氛下,于600-700℃煅烧,得到二硒化钼/二氧化钛复合材料。本发明所设计以及制备的复合材料可以广泛用于电池电极材料。本发明方法简易,重复性好,具有良好的应用前景。
本发明提供了吸波复合材料及其制备方法、以及人造电磁材料及其制备方法。本发明的吸波复合材料,按照体积百分比计,包含:0.1%-99.9%的纳米多孔气凝胶,以及0.03-33.3%的纳米级磁性金属微粉,其中纳米级磁性金属微粉弥散在纳米多孔气凝胶上。本发明的人造电磁材料,包括:基板、以及形成在基板的表面的吸收电磁波的导电微结构,其中,基板由本发明的吸波复合材料制成。本发明的吸波复合材料及其制备方法所制备的吸波复合材料、以及人造电磁材料及其制备方法所制备出的人造电磁材料,能够实现吸收电磁波。
本发明提供了一种低成本工业化生产TiC颗粒增强钛基复合材料的方法,属于钛基复合材料制备技术领域。该方法的特征在于将氢化脱氢生产钛粉过程与复合材料增强相的加入过程进行一体化集成,具体包括以下步骤:将海绵钛原料加入卧式旋转氢化炉进行氢化、破碎、脱氢后直接通入CH4气体在700~900℃进行气固相反应,反应后钛粉表面均匀分布细小碳质点,再经过冷等静压成型和真空烧结得到原位生成的TiC颗粒增强钛基复合材料。本发明优点在于:一体化全流程工业化生产TiC颗粒增强钛基复合材料,材料增强相分布均匀,综合力学性能优异,成本低廉,适合进行大规模的工业化推广。
本发明涉及氧化铝陶瓷纤维/粒子强化金属基复合材料的低压加压制备方法。通过低压加压法制作Al2O3陶瓷纤维/粒子强化金属基复合材料,添加Al粒子与熔融态Al?基合金互溶,与传统的固相法、液相法相比具有低成本,效率高等优点。Al2O3纤维在复合材料中呈现三维分布,摩擦磨损时能保护Al2O3粒子稳固,不易脱落。通过Al2O3纤维与强化粒子合理配比,使得强化材料达到分布均匀,提高了材料的耐磨性能。本发明制备的氧化铝陶瓷纤维/粒子强化金属基复合材料与现有的金属基复合材料相比,材料的耐磨性能更优异,具有广泛的应用前景。
本发明公开了一种轻质AlSiTi系高熵合金颗粒增强铝基复合材料及其制备方法。该轻质AlSiTi系高熵合金颗粒增强铝基复合材料采用密度在4.5?5.0g/cm3之间的AlSiTi系高熵合金颗粒为增强相,铝合金为基体。所述制备方法包括如下步骤:(1)制备高熵合金粉末;(2)制备预制块;(3)放电等离子烧结制备铝基复合材料。该轻质AlSiTi系高熵合金颗粒增强铝基复合材料具有较低的密度,密度在2.7?3.8g/cm3之间,且该复合材料的综合力学性能优异,具有良好的推广应用前景。
本发明公开了一种多相纳米陶瓷颗粒增强Al基复合材料及其激光3D打印成形方法;Al基复合材料的复合材料基体选用纯度为99.9%以上、粒度为15μm-30μm的AlSiMg粉末;Al基复合材料的增强相选用纯度为99.9%以上、粒度为10μm-100μm的粉末复合体,该粉末复合体包括Al2O3,SiO2,TiN,TiC,ZnO,Y2O3;将上述两粉末混合后依次经过高温煅烧合成--球磨--3D打印成形,即可加工出所需的三维块体。本发明所得Al基复合材料具有均匀细化的显微组织和优异的力学性能,综合力学性能比相应材料的传统铸造或粉末冶金制品性能水平提高25%以上。
本发明公开了一种聚酯-酚醛-聚乙烯醇缩丁醛-环氧复合材料及其制备方法,该复合材料由一层及以上聚酯-酚醛-聚乙烯醇缩丁醛-环氧玻璃纤维布预浸料经热压或热压卷制固化而制成,聚酯-酚醛-聚乙烯醇缩丁醛-环氧聚酯玻璃纤维布预浸料是浸渍有聚酯-酚醛-聚乙烯醇缩丁醛-环氧胶粘剂并预烘除去部分溶剂的半固化无碱玻璃纤维布,该复合材料经完全热固化后,其树脂固化物为36%~44%、无碱玻璃纤维布56%~64%。本发明聚酯-酚醛-聚乙烯醇缩丁醛-环氧复合材料适用在-196℃~130℃下工作,低温下使用,具有低温下强度高、韧性好等特点,实用性强;适用作液态罐装容器、结构件用玻璃纤维增强复合材料。
本发明提供一种微波复合材料,该微波复合材料由铁磁材料的纳米磁体和有机材料复合而成,所述纳米磁体分布在所述有机材料中,所述铁磁材料的纳米磁体的尺寸大于所述铁磁材料的室温超顺磁临界尺寸,所述有机材料的电阻率大于1Ωcm。本发明还相应地提供了多种方法制备所述微波复合材料的方法。本发明的优点包括:本发明的微波复合材料具有高电阻率和高饱和磁化强度的特点;本发明的微波复合材料柔韧性好,具有一定弹性;本发明有利于器件的小型化、轻便化;本发明的制备工艺可以与常规的半导体工艺兼容,实现一体化的单片集成电路。
碳纤维复合材料高压气瓶的制造方法,涉及一种纤维缠绕复合材料高压气瓶的制造方法。针对现有高压气瓶制造工艺存在高压气瓶存在重量大、强度低、成本高、气密性不好的弊端,本发明的碳纤维复合材料高压气瓶的制造方法包括制造金属内衬(1)、在金属内衬(1)外面缠绕碳纤维复合材料层(2)和固化过程,所述金属内衬(1)的制备过程依次包括以下五个步骤:a.旋压拉伸封头(1-1);b.再结晶退火处理;c.机械加工;d.端头焊接;e.焊制整体。用本发明所述方法可以制造出重量轻、气密性好、强度高、成本低的碳纤维复合材料高压气瓶。
本发明为一种多孔石墨基相变储能复合材料及其制备方法。相变储能复合材料采用多孔石墨作为基体材料,再浸渗有机相变材料构成。多孔石墨由天然鳞片石墨经过插层、膨化、压缩制备而成,有机相变材料采用结晶性脂肪酸、烷烃、酯类及其混合物。与现有相变储能复合材料相比,多孔石墨基相变储能复合材料具有导热效率高、储能量大等优点,可有效促进相变储能复合材料在诸多领域的应用。
本发明公开了一种高灼热丝起燃温度无卤阻燃增强尼龙复合材料,该复合材料由以下质量分数的原料组成:PA66树脂33~68份、阻燃剂A6~10份、阻燃剂B6~10份、复配阻燃剂2~8份、玻璃纤维15~30份、增韧剂3~6份、抗氧剂0.1~0.5份和润滑剂0.1~1份。本发明通过气相、凝聚相阻燃剂的多重阻燃作用制得高效、低烟、无毒的无卤阻燃增强尼龙复合材料,该复合材料保持了复合材料原有的阻燃效果的同时,也进一步提高了灼热丝起燃温度,3.0mm厚度样条的灼热丝起燃温度达到800℃以上不起燃的阻燃标准,可广泛用于接线柱、连接器、插座、开关、电器外壳和家电内零部件等的生产。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!