一种从废旧钛酸锂正负极粉合成钛铝合金的方法,包括:废旧钛酸锂正负极粉的还原浸出;浸出滤液的铜分离提纯和两步除铁铝;除铁铝液的深度除杂和分步提取稀贵金属钴镍;除铁铝渣分离净化提取氢氧化铝;萃余液的蒸发提锂和萃取提钛;偏钛酸和氢氧化铝混合煅烧;钛铝氧化物熔盐电解。本发明采用该从废旧钛酸锂正负极粉合成钛铝合金的方法,具有环境友好,经济效益高、资源最大化等优势。
一种回转强化固‑固转型反应进程方法回转强化湿法混合反应器,所述方法是使反应浆料从设有N个反应室的卧式回转强化湿法混合反应器的筒体的一端流入通过溢流逐一流经每一个反应室后,从筒体的另一端流出,筒体转动时利用研磨体在反应室内壁滚动和滑动,对浆料中的固体颗粒不断地擦搓和淘洗,及时地将新生的固体生成物从固体反应物表面清理,使固‑固转型反应得以持续顺行并有效强化。所述反应器,包括给料器、回转混合反应器、接液槽,给料器的输出接回转混合反应器的输入,回转混合反应器的输出接接液槽的输入。本发明过程连续,效率高,对固‑固转型反应强化效果好,结构简单,操作方便,适用于固‑固(液)转型反应的规模化工业生产。
本发明公开了一种机械辅助球磨提高氧化锌中铟的浸出方法,包括步骤:A.中性浸出:用萃余液浸出氧化锌烟灰,绝大部分锌浸出,铟留浸出渣中;B.中性浸出渣酸一浸:将步骤A得到的浸出渣进行酸一浸,过滤得到渣、液进行下一步处理;C.酸一浸渣机械辅助球磨酸二浸:步骤B产生的渣进行机械辅助球磨酸二浸,酸二浸液返酸一浸,渣回收到铅系统;D.酸一浸液萃取提铟:步骤B得到的酸一浸液用P204与磺化煤油萃取铟,然后经过反萃、置换、压铸、电解、熔铸得铟锭,萃余液返中性浸出。本发明方法具有设备简单、工艺操作简单、无环境污染、回收价值高、运行成本低和经济效益显著等特点。
本发明提供了一种从氯化物混合液中选择性回收铜的方法,该方法是在含铜离子的氯化物溶液中加入氯离子络合剂进行配位反应使铜离子转化成氯化铜分子和/或氯化铜络合物阴离子,采用阴离子交换树脂吸附分离溶液中的氯化铜分子和/或氯化铜络合物阴离子,负载氯化铜分子和/或氯化铜络合物阴离子的阴离子交换树脂采用酸液或水进行解吸,得到铜离子溶液。该方法实现了将铜从含锡、锰、锗或钴等复杂氯化溶液体系中选择性分离出来,达到资源化回收利用的目的,从而有效解决了复杂氯化物溶液体系中铜难于回收利用的问题。
本发明具体涉及一种从石煤中提取V2O5的方法。其技术方案是:将V2O5品位为0.7~1.3wt%的含钒石煤原矿,先采用“一种石煤提钒焙烧工艺”进行焙烧得焙砂;再按照“一种石煤提钒浸出工艺”对焙砂进行浸出,得水浸液、酸浸液;然后按“一种低浓度含钒水溶液的净化富集方法”对水浸液进行净化富集得净化液;净化液进行铵盐沉钒,得多钒酸铵和沉钒母液;最后将多钒酸铵经煅烧得V2O5产品。本发明还采用了“一种低浓度含钒酸浸液处理工艺”对酸浸液处理得富钒渣,富钒渣返回焙烧工艺。并按“一种沉钒母液的处理方法”对沉钒母液处理得铵盐,铵盐返回铵盐沉钒工序。本发明工艺流程简单、用水量小,工艺负荷低,可规模性生产,V2O5纯度高,石煤提钒总回收率达72%以上。
一种处理金属硫化矿物的方法。本发明在矿物原 料中加入以烧碱或纯碱为主的钠铁类固硫固砷剂, 并配入碳质 还原剂, 在一定的温度下进行直接熔炼, 产出含银的铅锑合金、 粗铅或其它粗金属。由于本发明采用钠铁类固硫固砷剂, 原料中 的Pb、Sb基本被还原为金属, 同时, 铁化合物与PbS·Sb2S3反应, 降低了反应活化能, 使Pb、Sb直收率分别达到88%、81%以上, 产出FeS、Na2S及砷酸铁等。具有工艺流程短, 有价元素直收率高, 无环境污染等优点。
本发明涉及一种从钒(V)铬(VI)混合液中完全回收钒和铬的新工艺,主要步骤包括:首先用伯仲复合胺萃取剂按逆流接触的方式与含有钒(V)铬(VI)水溶液接触萃取,将水中绝大部分钒和少量铬萃取到有机相中,而大部分铬留在水相中;然后用酸调节萃余液(水相)的PH,并加一定量的还原剂进行还原反应,再用氢氧化钠回调水溶液的PH值后过滤,得到的固体即为水合氧化铬,同时以碱液为反萃取剂,通过逆流接触方式将钒从富钒有机相中反萃到水中;再用铵盐沉淀法将钒从溶液中以偏钒酸铵的形式分离;最后采用高效精馏技术处理沉钒上清液,塔顶得浓氨水,塔釜得到脱氨水,直接返回到萃取过程。本发明以伯仲复合胺为萃取剂,低温选择性萃取分离钒和铬,不仅工艺流程简单,而且成本低,适合于大规模工业生产。此外,本发明还可以得到高纯偏钒酸铵和16%的浓氨水,并通过溶液回用确保水中钒和铬全部回收。
本发明公开了一种电热式程序控温结晶器,主要包括容器、加热装置和程序控温装置,程序控温装置连接并控制加热装置;程序控温装置为多段程序控温表。本发明的结晶器以液体作为传热介质和冷却介质,以电能为热源,通过程序控温装置与其他装置的协同作用,在精准控制冷却介质或反应液温度的同时对升温和降温速率进行精确控制,实现真正意义的程序控温(包括保温、升温、降温)。与现有技术相比,本发明结晶器模块化强、结构简单、便于组装,而且容易利用已有设备改装升级。总之,本发明具有工作温度、降温速率可控范围广,温度控制精准的特点,填补了国内外市场空白。将之器用于科研可获得精准的实验数据,具有广泛的应用前景。
本发明公开了一种铁矾渣制备铁红的方法,包括热酸浸出铁矾渣、浸出液除杂、水热法直接制备铁红。所述的热酸浸出铁矾渣是在温度60-100℃的条件下浸出1-4h,得到热酸浸出液,所述的浸出液除杂包括铁粉置换除铜,硫化除铅、镉、砷,H2O2氧化,得到净化液,所述的水热法直接制备铁红向净化液中加入添加剂,在120-150℃下反应0.5-3h,得到产品铁红。铁红制备中沉铁率高于93%,铁红的纯度为高于97%。本发明工艺流程简单,最大程度地实现了铁从铁矾渣中高效回收。
本发明公开了一种湿法分离回收卡尔多炉熔炼渣中有价金属的方法,是将卡尔多炉熔炼渣磨矿水浸脱除可溶性盐;再利用加压氧化酸浸使渣中的铜硒碲溶解浸出,处理可分别得到硫酸铜溶液、银硒渣和碲化铜渣,从银硒渣和碲化铜渣中可分别回收碲、银、硒;加压后的脱铜滤渣采用盐酸浸出脱锑、铋,最终得到可返回卡尔多炉熔炼的铅银渣;锑铋溶液进一步回收锑和铋。本发明采用分步脱除并回收卡尔多炉熔炼渣中富含的铜、锑、铋、硒、碲、银、铅等金属方式,与卡尔多炉处理铜阳极泥回收稀贵金属的湿法‑火法联合流程具有很好的兼容性,可使熔炼渣返回卡尔多炉熔炼处理,避免了返回铜熔炼系统对铜冶炼带来的不利影响,并得到铅银等有价金属富集程度较高的铅银渣。
本发明提供了一种从稀土盐溶液中沉淀回收稀土的方法。该方法包括以下步骤:将包含钙和/或镁碱性化合物的沉淀剂与含铵溶液加入到稀土盐溶液中,进行混合沉淀反应,沉淀剂的用量为沉淀稀土盐溶液中的稀土的理论用量的101%~130%,沉淀剂为固体或水浆;然后在稀土沉淀后进行固液分离,获得稀土沉淀物和沉淀母液,稀土沉淀物经过煅烧得到稀土氧化物。该方法采用的钙和/或镁碱性化合物沉淀剂廉价易得,制备过程简单可控,并大幅度减少了铵类物质用量,降低了氨氮污染,同时由于铵离子与钙/镁碱性化合物存在协同作用,促进了钙和/或镁碱性化合物的溶解,也解决了因仅采用钙和/或镁沉淀剂沉淀回收稀土过程中稀土产品纯度下降的问题。
本发明公开了一种废旧磷酸铁锂电池正极材料回收制备磷酸铁锰锂的方法,包括以下步骤:1)将废旧磷酸铁锂电池放完残余电量,将电池拆解后,将正极片取出、洗涤、烘干、焙烧后,将磷酸铁锂和铝箔分离;2)通过控制酸的加入量,将分离的磷酸铁锂酸浸,过滤分离不溶的磷酸铁和氧化铁,得到滤液;3)对滤液进行分析,调节元素摩尔比为nLi : nFe+Mn : nP=1 : 1 : 1,配入锰源和磷源后;调节pH值,得到沉淀;将沉淀烘干后,加入碳源后进行混合,得到预烧料;4)将预烧料在非氧化性气氛下固相烧结处理得到磷酸铁锰锂锂离子电池正极材料。该方法具有工艺简单、环保、产品性能好等优势。
本发明公开了一种壳聚糖混凝剂的制备方法,其特征是采用壳聚糖絮凝剂包裹铝铁系絮凝剂来制得;该方法包括如下步骤:(1)制备铝铁系絮凝剂;(2)制备壳聚糖絮凝剂;(3)将壳聚糖絮凝剂包裹铝铁系絮凝剂得到壳聚糖混凝剂。本发明具有产率高,成本较低,混凝效果好等特点。
本发明公开了一种高砷烟灰综合回收处理的方法。具体方法如下:对高砷烟灰采用两段浸出,两段浸出液进入旋流电解系统提取铜,经过两段深度脱铜,得到铜产品,然后进行脱砷得铜砷渣和硫酸锌溶液,脱砷渣采用碱浸、氧化结晶、预还原、旋流电解工艺生产出单质砷,而高压浸出渣中的铅、银,则用碳铵和氨水进行铅转化,使铅进入料液中,固液分离后得到含铅溶液用于回收铅,浸出渣则采用硫脲浸出得到含银溶液,通过置换得到银粉。本发明将高砷烟灰中的各种有价金属采用不同的工艺进行回收,同时这些工艺之间进行有机结合,使整个体系基本不产生废渣、废水、废气等,资源化程度高,工艺先进,回收率高,回收成本低廉,而且环保意义非常明显。
本发明提出一种抑制浓盐酸浸出粗氢氧化镍产生氯气的方法,取样分析反应釜内溶液的氢离子浓度,反应过程要控制[H+]低于0.83mol/L,根据反应釜内酸度测量结果决定浸出的操作过程是先加料还是先加酸,具体为:1、当酸度大于0.7mol/L时,先缓慢加入物料调节,加料量为2t/h以下;2、当溶液的酸度低于0.01mol/L时,要先缓慢加入浓盐酸调节,浓盐酸流量控制在3m3/h以下;3、当酸度在0.01?0.7mol/L之间,进料和加酸可以同时进行,加料量为2?3t/h;浓盐酸流量控制在3?5m3/h。本发明的有益效果:在浸出操作时,可有效抑制氯气生成条件,防止浸出过程中氯气生成,达到了降低现场环境中的氯气含量,改善作业环境,提高劳动生产率的目的。
一种处理含锑硫化矿的方法,是将稀盐酸体系含锑硫化矿浆料置于浆料槽中,浆料槽中设有机械搅拌桨,保持浆料处于混合均匀状态;浆料经过气动泵按照一定速度进入旋流电解系统,经电解后从电解装置排出继续进入浆料槽,如此循环,一定时间后矿物中的锑得到高效提取。工艺条件为:浆料中稀盐酸浓度为110‑180g/L,温度为55‑85℃,液固比为6‑12 : 1,阴极电流密度为100‑200A/m2。本发明流程短,反应速度快,反应过程传质均匀,与传统方法相比,锑的回收率得到极大的提高,实现矿物中锑的综合高效提取,提高锑资源利用率。
本发明公开了一种含氨及重金属废水的处理工艺,包括如下的步骤:废水引入到废水收集池,进行预处理,加入NACl,置入到氨气提取设备内,连接到气液分离塔,设置了塔底泵和次氯酸钠添加器,设置了氨气出口,气提塔下方设置了塔底水溶液循环机,设置了气提塔液体出口,所述的气提塔液体出口通过管道连接到三效多级蒸发器,经过三效多级蒸发器,在三效多级蒸发器上设置了蒸馏纯水出口,盐类回收,流砂过滤装置,进一步去除水中的悬浮物,本发明一种含氨及重金属废水的处理工艺,采用该方法,把污水重新进行资源化利用,方法简易可行,降低了工业成本。
本发明公开了一种快速制备氧化钴的方法,包括以下步骤:混合→低酸浸出→高酸浸出→沉钴→煅烧工艺,本发明是利用废钴酸锂原料具有含钴量高、其它杂质金属低的特点,有效地实现从废钴酸锂原料中分别进行二段选择性浸出钴金属离子,同时除去其它金属杂质,得到纯度高的钴离子溶液,经过用碳酸氢铵沉淀后合并浸出渣,经过煅烧工序得到氧化钴产品;本发明在处理废钴酸锂原料时,不使用还原剂,不但避免了硫酸还原浸出时产生二氧化硫气体的风险,且减少了化学沉淀除杂和有机萃取深度除杂质等工序,有效地缩短了生产流程和降低了生产成本,并且,浸出工艺简单,技术条件稳定可靠,钴回收率高,设备简单,不产生有害气体,值得推广使用。
一种从硫化砷加压浸出液中回收铼的方法,涉及从含铼的溶液中回收铼,特别是从硫化砷加压浸出液中富集铼。其特征在于其过程的步骤依此包括:(1)将砷滤饼进行加氧、加压浸出;(2)浸出液经二氧化硫还原生产三氧化二砷;沉砷母液萃取提取溶液中的铼,经多级反萃、蒸发结晶生产铼酸铵。本发明的方法,采用氧压浸出—SO2还原—萃取的技术,最终得到铼酸铵产品,整个过程,工艺流程简单、铼的回收率高、铼萃取剂价格低廉,不造成有价金属资源的二次浪费,能够为企业创造良好的经济效益。
本发明公开了一种液动旋流自动浓密机,属于浓密机技术领域,其包括减速机构、中心支架、传动装置、耙架、槽架、电动排放装置、耙子、密度检测仪和摆动式斜板处理装置,减速机构和摆动式斜板处理装置依次设置在中心支架上,通过减速机构驱动的传动装置贯穿设置在中心支架的内部,在传动装置上设有配合使用的耙架和槽架;在浓密机的下方形成圆锥形的空间,在圆锥空间的下方设有密度检测仪,在圆锥空间的锥口处设有电动排放装置;密度检测仪和电动排放装置均分别与外设的PLC相连。该浓密机,结构紧凑,功能齐全,通过PLC和密度检测仪实现了密度实时监控和排放的顺畅进行,实现浓密机的自动化控制,具有很好的实用性。
本发明公开了一种从钒铬渣中分离回收钒和铬的方法,其中,该方法包括:(1)将钒铬渣和第一含钠物料进行第一焙烧,并将第一焙烧后的产物进行水浸后固液分离,得到第一固相和第一液相;(2)将所述第一液相进行沉钒后固液分离,得到第二固相和第二液相;(3)将所述第一固相与第二含钠物料进行第二焙烧,并将第二焙烧后的产物进行水浸后固液分离,得到第三固相和第三液相;(4)将所述第二液相和所述第三液相进行接触并沉淀后进行固液分离,得到第四固相和第四液相;(5)将所述第二固相和第四固相进行煅烧提钒;(6)将第四液相进行还原沉铬。通过本发明的方法,可以简单地且高收率地从钒铬渣中分离回收钒和铬。
发明涉及一种矿物焙烧设备,尤其是涉及一种微波焙烧设备。该微波焙烧设备包括进料、出料装置,微波焙烧炉,微波加热源,将焙烧炉内蒸汽排出的排气装置,冷却装置,其特征在于微波焙烧炉的微波炉膛内安装翻板机构。翻板机构由翻板和滚轴构成,翻板固定在滚轴上,翻板能够随滚轴转动而翻转。滚轴的两端固定在耐火墙上,滚轴一端与电机相连。所述翻板机构有2个。翻板不锈钢材料制成。本发明结构简单,能够连续进行生产,且物料不会产生团聚现象堵塞炉膛通道,能够将焙烧炉内的抽蒸汽段、升温段、焙烧段区分开,使物料各温度点较均匀,促进整体还原率均匀。
本发明公开了离子交换法制备仲钨酸铵的方法,包括:(1)将钨精矿进行碱处理,以便得到碱性钨酸钠料液;(2)向碱性钨酸钠料液中加入酸性物质并加热进行中和处理,以便得到钨酸钠料液;(3)将钨酸钠料液进行稀释,以便得到交前液;(4)利用弱碱性阴离子交换树脂对交前液进行吸附处理,以便使交前液中的钨被弱碱性阴离子交换树脂吸附;(5)利用解吸剂对吸附有钨的弱碱性阴离子交换树脂进行解吸处理,以便得到解吸液;(6)将解吸液进行除杂处理,以便得到除杂后液;(7)将除杂后液进行蒸发结晶处理,以便得到仲钨酸铵。利用该方法可显著提高交前液中三氧化钨的浓度,减少废水的产生,并制备得到合格的APT。
本发明公开了一种工艺路线合理效率质量高的安全带固定板及其制备方法,其特征在于,包括以下重量份组分:包括以下重量份组分:褐铁矿500‑550、菱铁矿400‑480、黄铜矿10‑20、孔雀石8‑9、磁赤铁矿10‑14、闪锌矿5‑6、锡石2‑3、脆硫锑铅矿1‑2、白钨矿2‑3、钽金红石3‑4、一水硬铝石6‑8、黝铜矿8‑9、硫化铜镍矿20‑30、镍矿生物冶金催化剂200‑260。本发明采用生物冶金技术,提高镍利用率,且采用多道机械加工工艺提高零件机械性能。
本发明公开了一种耐污染型大容量大孔弱酸树脂的合成方法,包括按一定比例采用丙烯腈单体、二乙烯苯交联剂、致孔剂和引发剂配制形成油相,采用水、分散剂和NaCI在聚合釜中配制好水相,然后将油相加入到水相中,聚合釜内发生放热反应,放热最高到95℃;用配制好的饱和盐水降温,将聚合釜内温度保持在95℃,再升温至100℃,保温蒸馏;降温、出料、洗涤、烘干、筛分和冷却后,得到耐污染型大容量聚丙烯酸系阳离子交换树脂白球,白球用乙醇溶胀后与60wt%的硫酸混合进行水解反应,保温10小时后出料,出料水洗至接近中性,调碱至pH=12,稳定2小时;再水洗至中性,调酸至pH=2,稳定2小时;用纯水洗至中性,再用浓度为30%的NaOH转型成为钠型树脂,即得耐污染型大容量大孔弱酸树脂。
一种镍电解阳极液的除杂工艺,所述方法包括以下步骤:(1)镍电解阳极液含氯化铵浓度范围为30~300g/L、镍离子浓度范围为0.5~100g/L、铜离子浓度范围为0.5~10g/L、铁离子浓度范围为0.01~2g/L,取镍电解阳极液,加入硫化镍使其浓度范围为0.5~20g/L,控制温度20~70℃,磁力搅拌转速300~700r/min,搅拌10~120min后,过滤,滤液即为除铜后的镍电解阳极液;(2)向除铜后的镍电解阳极液加入氨水使其浓度为30~400g/L,搅拌1~20min,过滤后,得到除铁后的镍电解阳极液。该工艺具有工艺简单、原料简单易得、流程不引入其他杂质、除铜铁效果优异等优点。
本发明公开了一种碲化铜渣综合回收银、硒、碲、铜的方法。包括以下步骤:(1)氧化酸浸:将碲化铜渣加入含有氧化剂的稀硫酸溶液中加热搅拌浸出,过滤后得到硫酸铜浸出液和酸浸渣,浸出液送去回收铜;(2)碱浸分离:将酸浸渣加入氢氧化钠溶液浸出,得到亚碲酸钠溶液和碱浸渣,碱浸渣送回KALDO炉熔炼回收银、硒;碱浸液经净化、沉碲、煅烧、电解后制精碲。本发明提供的方法,银、硒、碲、铜的回收率高,银、硒、碲、铜无损失,富集比高,与其他杂质分离较好,对环境污染小、工艺简单、所需设备成本低。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!