本发明提供了一种微波水热法制备金属铋粉体的方法,其以五水硝酸铋、二水钨酸钠、迭氮钠、水合肼和氯化铵为原料,将五水硝酸铋和二水钨酸钠按照Bi:W=2:1的摩尔比溶于去离子水中,再将迭氮钠、水合肼和氯化铵按照1:3:1的比例加入到混合溶液中,控制混合溶液中N与Bi的摩尔比为N:Bi=(0.25~1):1,搅拌均匀,得前驱液,采用微波水热法在160℃-200℃下反应,控制保温时间为30-90mins,待反应完成后,冷却,取出反应釜中的沉淀物,用去离子水和无水乙醇洗涤至中性后,恒温干燥,得到金属Bi粉体。本发明方法具有装置简单、低温、高效等特点,是一种工艺简单、高效率、低能耗、成本低廉并且是环境友好型的制备方法。
一种元素硫歧化电解制氢、铜、铅、锌、酸、氯碱的方法,元素硫常温催化歧化与电解制氢循环,亚硫酸电解制氢,分解水转化的NaHSO4、Na2SO4、H2SO4与固体NaCl热分解制取盐酸、HCl和SO3气体及浓H2SO4,Na2SO4熔盐元素硫歧化与还原再生SO2和Na2S,膜电解Na2S制H2、NaOH、再生S,燃料电池浓缩NaOH,元素硫歧化催化碱分解硫化矿,如方铅矿、闪锌矿、黄铜矿、黄铁矿等,碱分解硫化矿水浸液膜电解制H2、再生NaOH、回收S,CuCl与Na2S同槽阳膜电解制Cu粉、再生S,阴膜电解制Cu2O、H2,CuCl与废杂铜同槽电解、废杂铜再生。
本发明公开了一种低品位钨精矿、钨渣的处理方法,该方法是将低品位钨精矿或钨渣与煤粉及还原焙烧强化剂混合后,进行还原焙烧;还原焙烧所得产物经研磨后进行中性浸出,得到钨酸盐溶液和浸出渣,浸出渣采用磁场进行磁选分离,得到精铁矿和有价金属尾矿;有价金属尾矿依次经稀盐酸脱硅、浓盐酸浸出锰后,再用氢氟酸浸出钽和铌,制备出钽和铌产品;该方法有效地将低品位钨精矿、钨渣中难以提取的有价元素(钨、铁、铜、锰、铋、钴、钽、铌等)的高效富集和分离回收,从而实现低品位钨精矿或钨渣中有价元素的资源化综合利用;且该方法采用的设备简单,流程短,操作简便,经济可靠,有利于工业化生产。
本发明提供了一种采用低共熔溶剂分离废旧锂离子电池正极材料的回收方法,属于锂离子电池回收技术领域。将氯化胆碱、木糖醇和去离子水按摩尔比混合后先加热再冷却至室温配置成低共熔溶剂;破碎废旧锂离子电池的正极电极材料;将正极电极片破碎物料与配置好的低共熔溶剂混合后加热处理,破坏粘结剂后分离出正极材料颗粒和铝箔,经筛分、过滤,得到正极材料颗粒、铝箔和低共熔溶剂滤液。该方法剥离效率高,正极材料颗粒保持完整,有利于再生利用,采用的低共熔溶剂不产生污染,经济环保,能够充分的脱除粘结剂,应用前景广泛。
提供了一种回收锂离子电池的方法,包括:将锂离子电池切碎,并且将残渣浸入有机溶剂中;将切碎的电池残渣进料到干燥机中,产生气态有机相和干燥的电池残渣;将干燥电池残渣进料到磁力分离器,去除磁性颗粒;研磨非磁性电池残渣;将细颗粒和酸混合,产生金属氧化物浆料并且浸出所述金属氧化物浆料;过滤浸出液,除去不可浸出的金属;将浸出液进料到硫化物沉淀槽;中和浸出液;将浸出液与有机萃取溶剂混合;使用溶剂萃取和电解从浸出液中分离钴和锰;从水相中结晶出硫酸钠;向液体中加入碳酸钠并且加热碳酸钠和液体,产生碳酸锂沉淀;和干燥并回收碳酸锂。
本发明公开了一种同步脱除溶液中氟、氯、铁的方法;在含Fe2+、F‑、Cl‑的溶液中持续通入含强氧化性气体的气体,同时加入催化剂,并加入中和剂控制pH值为1.5~4.2,于剪切强化下反应,固液分离获得净化后液和除铁渣。本发明利用催化剂催化氯离子与强氧化性气体反应形成氯气,并在金属矿物型催化剂存在的情况下,无需引入晶种,只控制pH值于剪切强化下的作用下,即能够高效的生成针铁矿晶型为主的,且具有细小粒径的除铁渣,使更多的氟离子吸附进而实现高效吸附除氟,因此通过本发明的方法,可以同步高效的脱除氟、氯、铁。本发明能够实现一步从溶液中脱除氟、氯和铁,是一种高效、清洁、节能的净化工艺。
本发明公开一种选择性分离低品位复杂黄铜矿中铜、锌和铁的方法,涉及冶金工程技术领域。本发明将低品位多金属复杂黄铜矿细磨、干燥后配入工业品级木质素磺酸钠和氯化铵,混和均匀并加水调浆后,于加压釜中加热至温度为160‑180℃,通入纯度为90%的工业氧气并维持1.0‑1.4Mpa的氧分压下水热反应1.0‑3.0h,反应结束后冷却至温度低于80℃,卸压后进行固液分离和洗涤,得到富含铜和锌的溶液,滤饼为主要成分为单质硫、硫酸铅和Fe2O3的转化渣。本发明在浸出过程中添加一种由表面活性剂与催化剂按一定配比组成的复合催化助剂,在氧气加压的水热条件下以水作为浸出剂浸出低品位复杂黄铜矿中铜和锌,并将铅和铁等杂质元素定向转化保留于浸出渣中。
本发明公开了一种电位自动控制选择性净化除铜镉的方法。所述电位自动控制选择性净化除铜镉的方法,包括:提供含铜离子和镉离子的溶液;向含铜离子和镉离子的溶液中加入锌粉进行置换除铜,固液分离后得到置换除铜后液和铜渣,其中,利用反应终点电位控制置换除铜过程中锌粉的加入量;向置换除铜后液加入锌粉进行置换除镉,固液分离后得到置换除镉后液和海绵镉,其中,利用反应终点电位控制置换除镉过程中锌粉的加入量。本发明利用电位测量方式判断溶液铜、镉杂质置换反应终点,分步提取溶液中的铜、镉,达到精准除杂质的目的,从而优化镉回收处理工序,降低锌粉单耗和生产成本,实现生产控制水平提升和经济效益的增加。
从冶金残余物,特别是从含有铜、铁、铅、硅、银和锑并可任选含有元素例如砷和铋的残余物生产银浓缩物的方法,包括:(i)冶金残余物的使用第一酸溶液的铜浸出,以便获得富含铜和铁及任选砷的第一浸出溶液和具有减小的铜和铁含量及任选减小的砷含量且富含铅、锗、银和硅的第一已浸出泥渣,(ii)浸出第一已浸出泥渣,其中用羧酸盐的第一溶液处理所述第一已浸出泥渣,以便获得缺乏铅的第二已浸出泥渣和富含铅的第二浸出溶液,(iii)第二已浸出泥渣的碱性浸出,其中添加碱以便形成碱性浸出溶液,以便获得具有减小的硅含量的第三已浸出泥渣和富含硅及任选砷的第三浸出溶液,(iv)第三已浸出泥渣的盐酸浸出,其中在氯化物环境中使用酸溶液,以便获得用于最终处置的第四已浸出泥渣和富含银、铜、铅和铁及任选砷的第四浸出溶液,(v)用中和浆料从富含银、铜和铁及任选砷的第四浸出溶液沉淀银,以便生产富含氯化物的第五溶液和富含铁、铜、铅和银及任选砷的第一沉淀固体,(vi)用硫酸溶液浸出富含铁、铜、铅和银及任选砷的第一沉淀固体,以便生产富含铜、铁及任选砷的第六浸出溶液和第一银和铅浓缩物,和(vii)用第二羧酸盐溶液浸出第一银浓缩物,以便生产第七浸出溶液和第二银浓缩物。
本发明提供了一种线路板的处理系统。该处理系统包括:裂解单元,具有裂解烟气出口和固渣出口;重金属污泥供应单元;侧吹熔炼单元,具有待熔炼物料进口和侧吹入口,裂解烟气出口与侧吹入口相连,待熔炼物料进口与重金属污泥供应单元相连。由于线路板裂解产生的裂解烟气温度较高且其中含有许多有机物,因此其具有较高的热值,进而将裂解烟气出口与侧吹入口相连使线路板裂解过程和重金属污泥的侧吹熔炼进行组合,将裂解烟气作为重金属污泥侧吹熔炼的部分燃料进而充分利用该部分热值,同时避免了有机物的外排造成的环境污染,而且降低了重金属污泥的侧吹熔炼成本。重金属污泥的侧吹熔炼可以通过富氧条件下的充分燃烧使得熔炼烟气的污染度较小。
本发明公开了一种从废弃锂离子电池电极材料中分离钴酸锂和石墨的方法,包括以下步骤:(1)将废弃锂离子电池混合正负极材料通过筛分,得到筛下物料;(2)筛下物料通过过滤烘干后,进入磨矿设备,得到磨矿产品;(3)磨矿产品进入浮选机进行反浮选分离富集,即一段浮选,沉物为钴酸锂精矿,浮物过滤烘干后进入破碎设备处理,然后进行二段浮选,二段浮选的浮物为石墨尾矿,沉物为钴酸锂中矿,钴酸锂中矿返回步骤(2)的磨矿设备重新进行磨矿浮选。本方法可以获得品位分别为92.56%和83.67%的钴酸锂和石墨产品,并具有处理量大,设备技术成熟,成本投资低,不产生有毒气体及废水的优点,是工业化运用的良好选择。
本发明提供了一种采用萃取方法去除钙和镁的方法,其特征在于,具体步骤为:第一步:将待除钙镁料液采用二(2-乙基己基)磷酸进行预萃初步去除钙离子;第二步:将第一步所得的料液用二(2-乙基己基)磷酸进行主萃,去除钙离子;第三步:将第二步所得的料液用2-乙基已基膦酸单2-乙基已基酯进行主萃,去除镁离子,得到去除钙和镁的产品料液。本发明相较于传统的化学沉淀法除杂工艺,能够降低加工成本,减少设备损坏率,提高产品品质。
本发明公开了湿法冶炼钼镍共生矿的方法,包括①矿粉浸出:原矿粉碎球磨后,控制固液比1∶3,反应温度60℃~90℃之间,反应时间3h~4h,浸出液为KClO4或NaClO3或KMnO4和30%的硝酸或98%的硫酸;②过滤固液分离,③调至pH≈2滤液沉淀钼酸H2MoO4;④将所得的H2MoO4加热脱水后得MoO3;⑤滤液剩余钼萃取;⑥阴离子交换树脂吸附镍,处理后得氯化镍;⑦吸附镍后的溶液经过生石灰中和处理。本方法回收率高:工艺简单,流程短,钼的总回收率达到98%左右,镍的总回收率达94%~97%,对环境友好:采用的湿法工艺,原矿不经过焙烧,从而不产生粉尘和有害气体,有利于对环境的保护。
本发明公开了电解锌阴极板一次性三边注塑成型工艺,所述工艺包括以下步骤:将阴极板本体的三边进行界面处理,首先将表面的油污粉尘、杂质等做清洁处理,然后通过打磨设备对边缘出现的卷边或毛刺进行打毛处理,再将阴极板本体的边缘进行倒角处理,得到倒角一,然后按比例通过打孔设备开设通孔,开孔直径根据阴极板本体的板面厚度而定,并且对通孔的边缘亦进行倒角处理,得到倒角二,开孔完成后除去因打毛处理、倒角处理以及开孔产生的杂质、粉尘,用白布蘸清洁剂擦拭干净,并用清洁水冲洗干净,干燥后待用。本发明通过设置通孔、倒角一、倒角二和内置铆钉,解决了现有电解锌阴极板应用领域绝缘条容易脱落这一技术难题。
本发明公开了一种从氯化铜锰锌钴溶液中萃取提取铜并制备电子级硫酸铜晶体的方法,具体为:在氯化铜锰锌钴溶液加入中和剂,调节其pH值为1.5~2.5后作为萃取料液,采用Lix984与磺化煤油组成的萃取有机相进行选择性萃铜,得到负载有机相和萃铜余液;负载有机相经过洗涤后硫酸反萃,得到硫酸铜溶液,硫酸铜溶液蒸发结晶,得到电子级硫酸铜晶体。本发明可选择性地提取氯化铜锰锌钴溶液中的铜并制备电子级硫酸铜晶体,实现铜与锰、锌、钴等的分离,对环境友好,而且金属回收率高,处理成本低。采用本发明方法制得的电子级硫酸铜产品指标良好,其主品位≥99.5%,可广泛应用于电镀行业、无机工业、燃料及颜料工业、涂料工业、印染工业等领域。
本发明公开了一种从废铅膏中回收铅的方法,包括以下步骤:(1)将废铅膏与草酸和硫酸溶液混合反应,反应后过滤并用水洗涤至pH=6‑7,然后烘干得到酸浸铅膏;其中,硫酸溶液与废铅膏的液固比V/W为5‑10:1mL/g,草酸与废铅膏的质量比为0.3‑5:1;(2)脱硫:将酸浸铅膏和脱硫剂混合反应进行脱硫,得到脱硫铅膏;(3)焙烧:将脱硫铅膏进行焙烧得到氧化铅。本发明从废铅膏中回收铅的方法,通过同步添加草酸和硫酸的方法,以硫酸作为浸出剂、草酸作为还原剂,不会引进新的杂质,实现废铅膏的同步还原硫酸化,缩短工艺流程,降低能耗,减少化学试剂的使用。并使得后续的脱硫或者浸出工艺的处理具有高选择性,且更简单、高效。
本发明提供了一种废电脑CPU的分离回收方法,首先从废旧电脑主板上拆除废旧CPU,将针脚和CPU基座分离;将针脚与钢球、介质油混合,加入立式搅拌球磨机中,球磨将针脚表层的金镀层和少量的铜从铜质针脚上剥离,筛分得到脱除金镀层的铜质针脚、钢球和混入金粉、铜粉的介质油;抽滤清洗得到金粉和铜粉混合物;将金粉和铜粉加入稀硝酸中使铜溶解,过滤得到硝酸铜液体可进一步结晶制取硝酸铜晶体,滤渣为固体粉末,将固体粉末放入坩埚中,采用氧‑丁烷焰喷灯将坩埚中的固体粉末喷射火焰,进行高温熔炼,冷却,得到金颗粒。本发明采用的方法和装置简单、回收效率高。
一种废旧线路板铜粉预处理分选脱除杂质金属的方法,废线路板铜粉在球磨罐中用硫酸溶液浸出,使其中的铝和铁选择性浸出;得到的浸出渣烘干后采用机械筛分的方式使铅和锡分离进入细颗粒,铜富集于粗颗粒;最后采用控电位硫酸氧化浸出的方式处理细颗粒,使其中少量的铜溶解。本发明的实质是采用化学浸出和机械处理相结合的方式选择性脱除废线路板铜粉中的杂质金属,解决了废线路板铜粉中杂质金属对火法炼铜的危害问题以及实现了金属资源的回收利用。
提供了一种用于从富镍有机相中回收NiSO4.6H2O晶体的方法。所述方法包含:使富镍有机相与具有足够H2SO4浓度的洗提水溶液接触以从所述有机相中萃取镍;以及使所述富镍有机相与具有足够Ni2+浓度的洗提水溶液以沉淀NiSO4.6H2O晶体并形成贫镍有机相。还提供了用于回收NiSO4.6H2O晶体的方法,所述方法包含前述处理步骤,所述前述处理步骤包含对硫化镍精矿进行低温压力氧化(LT‑POX)高压灭菌以得到富集浸出溶液(PLS)。
本发明公开了一种硫酸钡和碳酸钾混合溶液的分离方法,将硫酸钾废液除掉机械杂质;在硫酸钾废液中加入表面活性剂,开启搅拌并升温至40~80℃后,缓慢加入碳酸钡,同时启动循环泵,将反应液输送至水磨机将生成的硫酸钡颗粒磨碎后再循环至反应器,每小时循环量为反应液体积,将反应液经离心机离心分离使固液分离,分别得到粗硫酸钡颗粒和碳酸钾溶液;粗硫酸钡颗粒经板框压滤机过滤,滤饼经清水洗涤至洗涤水接近中性、干燥、过300目的筛子,得到硫酸钡产品;碳酸钾溶液经过三效真空蒸发器蒸发至碳酸钾浓度为300~500g/L,再经冷却结晶、离心分离及干燥,得到碳酸钾产品。本发明的有益效果是处理硫酸钾废液成本低,不会造成二次污染。
本发明公开了一种从废弃线路板快速回收高纯金属铜的装置,包括反应器和电源,所述反应器内部设有不锈钢阳极网篮和不锈钢板阴极,电源向不锈钢阳极网篮和不锈钢板阴极供电;不锈钢阳极网篮底部连接有通气管道,通气管道与安放在反应器外部的空气压缩机连通;反应器下方设有磁力搅拌仪,磁力搅拌仪的搅拌子安放在反应器内部。本发明开发了一种环境友好的,几乎无二次污染的从废弃线路板回收高纯金属铜的方法及其装置,从而实现了废弃线路板的高附加值资源化回收。本发明可以一步到位地快速实现电路板中的高纯金属铜回收,方便快捷。
一种从碲渣中分离碲的方法,本发明先将碲渣磨矿后在水溶液中浸出,水浸液经过净化和中和后产出二氧化碲;水浸渣在盐酸体系中盐酸浸出,酸浸液冷却后过滤,酸浸渣返回阳极泥处理过程;酸浸液经过控电位还原产出粗碲,粗碲和中和产出的二氧化碲经过焙烧脱杂后得到纯二氧化碲;还原后液再分别用传统方法回收铜铋锡等有价金属。本发明碲总浸出率高达98%以上,产出的粗碲杂质元素含量低,返渣少,对设备的改造幅度小,处理时间短、处理成本低。
本发明公开了一种高氨氮稀土湿法冶炼皂化废水的深度处理工艺,其特征在于:先向稀土湿法冶炼萃取液皂化废水中投加反应药剂,进行反应,反应后沉淀,分离出固体废渣,再向清液中通入含CO2的废烟气,并使废水中Ca2+的含量在0.01mol/L以下,过滤,然后将废水调pH值至10.5~11.0并加热至55~65℃后,通入脱氨塔中进行负压蒸氨式脱氨处理,脱氨后回调废水的pH值到6~9。本发明采用生石灰、废烟气与负压蒸氨相协同配合的方法,不仅去除了稀土湿法冶炼萃取液皂化废水中的各种金属F-,SO42-等离子,还去除了被忽视在钙离子,避免了后续设备的结垢问题,同时还处理了锅炉产生的废烟气。
本申请提供了一种镍钴锰的回收方法及回收得到的材料与回收系统,镍钴锰的回收方法包括以下步骤:将废旧三元正极材料进行过筛处理,得到筛下物,筛下物包括镍钴锰酸锂;将筛下物放置于还原气体的气氛中进行还原处理,得到还原料,还原料包括镍单质、钴单质、锰氧化物和氧化锂;将还原料浸出处理,得到浸出浆料,浸出浆料包括镍、钴及锰氧化物的固体和含锂离子的液体;将浸出浆料进行过滤处理,得到浸出渣,浸出渣包括镍、钴及锰氧化物;将浸出渣进行水洗处理,得到镍单质、钴单质和锰氧化物。工艺流程简单,过程条件易于控制,回收效率高,完成一次生产用时短,对设备要求不高,生产效益高。
本发明公开了一种废旧锰酸锂电池的回收再利用方法,该方法是将废旧锰酸锂电池进行破碎、回收电解液及风选,轻产物经过冲洗得到干净隔膜及细粒级活性物质,重产物经过湿法剥离金属混合物和细粒级活性物质,金属混合物由色选选出金属铜和金属铝,细粒级活性物质通过反浮选工艺进行分离石墨和锰酸锂材料,锰酸锂材料经过补锂固相烧结以及包覆再生后可以形成性能良好的锰酸锂电池材料;该方法流程工艺简单、成本低廉,既可以对废旧锰酸锂电池中的有用物质进行有效回收,又可以对废旧锰酸锂电池中的污染物质进行有效处理,符合二次资源处理的三化原则。
本发明公开了一种湿法炼锌净化渣中锌钴的回收方法。该工艺首先将湿法炼锌净化一段产生的铜镉渣中的铜镉除去之后得到的贫镉钴液置于贫镉沉钴槽,然后将二段净化渣钴镍渣进行浆化,浆化后的浆化液与贫镉沉钴槽中的贫镉钴液混合,在活性剂的存在下,通过一定的反应时间及反应温度,通过钴镍渣中含有的锌粉实现对贫镉沉钴液中的钴进行沉降;该方法将钴镍渣的锌粉进行再利用、同时实现了对贫镉沉钴液中钴进行充分的沉降,大大减少了锌粉的消耗量,降低了生产成本。该工艺简单、合理,易操作,很好的实现了废渣的循环利用,具有很好的应用前景。
本发明提供了一种用氧化铋渣制备铋电解液的方法,其特征是:磨细的氧化铋渣在氟硅酸体系浸出后过滤,浸出渣返回银转炉吹炼过程,首先向浸出液中加入铅粉以置换溶液中的铜,除铜后液加入硫酸回收铅,硫酸沉铅净化后所得溶液即为合格铋电解液。本发明采用氟硅酸体系浸出,实现铋铅铜和银的分离,不仅贵金属积压少,而且金属浸出率高。
本发明提供的废旧磷酸铁锂电池的材料回收利用方法,以废磷酸铁锂电池正极铝箔片为原料,将废旧磷酸铁锂电池的正极铝箔片,进行煅烧处理后进行机械震荡处理,以使正极铝箔片的正极材料从铝箔片上脱离,并除去正极材料中多余的中Li+、Fe2+和PO43‑,从而获得再生的磷酸铁锂材料,上述方法简单易于操作,能耗较低,对环境友好,不产生二次污染物。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!