金属钨湿法冶炼中季铵盐碱性萃取三相絮凝物的处理方法。本发明涉及一种对钨碱性萃取产生的三相絮凝物进行处理的方法,所述方法包括采用石灰对三相絮凝物进行混合、搅拌、加热、保温等过程,对三相絮凝物进行破乳,从而便于进行后处理,进行压滤后的滤渣经过隔膜压榨后作为添加剂加入焙烧料进行烧结回收其中的钨,水相返回生产线,有机相返回萃取线,从而实现对物料的回收。
一种利用高铁闪锌矿强化斑铜矿浸出的方法,包括以下步骤:将高铁闪锌矿和斑铜矿分别进行磨矿,得到高铁闪锌矿粉和斑铜矿粉;将9K基础培养基进行高温高压蒸汽灭菌,将所述高铁闪锌矿粉和斑铜矿粉进行间歇灭菌;将灭菌后的所述高铁闪锌矿粉和斑铜矿粉进行混合,然后加入已灭菌的所述9K基础培养基,得到矿浆,然后调节矿浆pH至1.5‑2.0;将上述矿浆进行搅拌浸出,并调控浸出溶液化学条件。本发明缩短了整个浸出周期,同时大大提高了浸出率和浸出速率,清洁环保,成本低,适合大规模推广应用。
本发明涉及新能源材料与技术领域,尤其涉及一种从氯硅烷加工副产物中提取细硅粉的方法及应用,在氯硅烷加工副产物中加入低沸点溶剂和/或低沸点低官能度氯硅烷进行洗涤,过滤,即得细硅粉产品。该方法得到的细硅粉在含硅锂离子电池电极材料和含硅超级电容器电极材料中的应用。本发明的提取方法所得细硅粉产物的金属组分含量低,可避免电极材料的短路现象,适用于锂离子电池负极材料的制备,本发明从氯硅烷加工副产物中提取细硅粉的方法,开拓了有机硅及多晶行业副产细硅粉的新用途,解决了有机硅、多晶硅行业里最大的危险固废的无害化处理问题。
本发明公开了一种再生修复废旧锂离子电池正极材料的方法。首先,将拆解、除去表面有机质的废旧锂离子电池正极材料分级处理,去除废旧锂离子电池材料中粉化的细碎颗粒。然后,将分级得到的废料与适当比例的锂盐球磨混或浸渍于锂盐溶液中,得到均匀混锂的废料。最后,采用微波烧结的方法,将混锂废料置于空气或氧气气氛下进行热处理,再生制备锂离子电池材料。该方法采用微波焙烧,材料升温速率快,效率高,且在整个回收过程中,无需强酸、强碱,无废渣、酸碱性废水生成,不易产生二次污染。同时,该方法流程简单,微波加热时,材料内部温度更均匀,再生产品质量稳定,性能良好。
首先,本发明涉及使用浓盐酸的两段式沥滤方法,其中,磨碎的矿石在不同温度下利用两种不同数量的盐酸进行沥滤。其次,本发明涉及一段式沥滤方法,其使用浓HCl以及固定的酸与矿石比率以防止钛的水解。然后,溶解的钛通过水解作用从滤液中析出,以及仍溶解的氯化铁然后可选地经过氧化水解作用以回收铁氧化物和HCl。所述方法被开发用于低级矿石(低于12%的TiO2)且有利地容易应用于较高级别的含钛矿石,其使各种各样的低质量钛铁矿石升级成优质钛精矿和铁氧化物产品。
本发明公开了一种褐铁型红土镍矿盐酸常压浸出—酸浸液中蛇纹石型红土镍矿选择性浸出—水解耦合反应—含Fe、Si氧化物分离、纯化制备铁精粉及建材用SiO2的红土镍矿清洁生产方法,该方法可解决红土镍矿传统常压浸出液难以处理、酸耗大的问题,实现镍、钴、铁分离及综合利用。
本发明提供一种强化黄铜矿与斑铜矿生物浸出的方法。选用嗜酸氧化亚铁硫杆菌,喜温嗜酸硫杆菌和嗜铁钩端螺旋菌中的一种或几种作为浸矿微生物。控制黄铜矿与斑铜矿的配比在5:1-1:5之间。浸出过程中,控制搅拌速度为100-600rpm,控制溶液pH值为1.5-2.5,溶液电位为350-480mV(Ag/AgCl为参比电极),黄铜矿与斑铜矿可协同浸出,Cu浸出率显著增加。该方法通过黄铜矿与斑铜矿的合理配矿,控制合适的浸出工艺条件,提高黄铜矿与斑铜矿的生物浸出效率,该方法高效、简单、易操作。
本发明为一种高效空气氧化除铁装置,它有搅拌槽和空气进气管,空气进气管在进入搅拌槽之前先通过一个空气溶液混合器,该空气溶液混合器由管径较粗的溶液循环管与管径较细的空气进气管组成,空气进气管沿溶液循环管的管心线方向引入接通,溶液循环管与泵的输出管连接,搅拌槽和溶液输入管与泵的输入管连接,空气进气管与压缩空气源连接。待除铁的溶液经溶液输入管由泵泵至溶液循环管,在空气溶液混合器处与压缩空气混合,经管道引入搅拌槽继续搅拌混匀,二价铁在与空气接触过程中被氧化成三价铁,进而水解成固体渣除去。本发明采用循环反复与空气接触的方式让溶液与空气多次混合,二价铁与空气的接触机会充分,二价铁向三价铁的转化彻底,除铁率高达98%,而作业成本仅为二氧化锰氧化法的十分之一。
本发明涉及一种深海多金属结核和富钴结壳混合氨浸方法,其特征在于其过程依次为:将多金属结核和富钴结壳进行混合、混合矿破碎、细磨;将磨细的物料加到铵盐溶液中,通入一氧化碳进行还原浸出;浓缩分离,浓密机的上清液返回浸出;浓密机的底流进行过滤,得到浸出液A;洗涤滤饼,然后过滤,滤液为含镍、铜、钴、钼的洗水B;将浸出液A和洗水B混合,通空气氧化使溶液中的锰、铁氧化沉淀,然后过滤,分别得到沉淀物C和溶液D;沉淀物C返回浸出,以回收共沉淀的镍、铜、钴;溶液D按常规的方法分离和回收镍、铜、钴、钼。在本发明方法不需另外补充碱式碳酸铜或其它铜盐或铜粉,从而实现多金属结核的自催化还原,有利于减少一氧化碳消耗。
本发明涉及一种密闭式电积槽。常用的电积系统为开放式的玻璃钢槽体,该类电积槽,电解液及电解过程中产生气体容易挥发;阴阳极极间距不等,电解液流通不畅,导致阴极沉积金属厚薄不均、容易弯板;浓差极化严重,阴极产出金属杂质含量大,电效不高。本发明采用密闭式结构,并连式的电解液流动方式,保证流入每个电积极室内电解液化学成分都与电积槽整体进液相同,再配合电解液金属离子浓度、电流密度加大电解液流速,消除了电解过程的浓差极化。本发明可简单有效消除电解环节中产生的有毒害气体的释放,并且可避免腐蚀性电解液的挥发;能有效减少电积产品杂质含量,大幅提高电效;减少气泡对阳极造成的气液界面腐蚀。
本发明公开了一种三元复合氧化物阳极的制备方法,首先对钛基体进行预处理,具体包括碱洗、草酸蚀刻、超声清洗和烘干;将RbCl与H2IrCl6按一定比例与硅酸四乙酯进行混溶,静置后得到制备涂覆溶液所需的溶质;将体积比为1:1的正丁醇和异丙醇的混合溶剂加入到所配溶质中,得到涂覆溶液;再将制备好的涂覆溶液均匀涂覆在预处理后的钛基体表面,经烘干、烧结处理后得到Ir‑Rb‑Si三元复合氧化物阳极。该方法制备流程简单,所制得的阳极具有高析氧催化活性表面,表现出了较好的析氧催化性能以及使用寿命。
本发明公开了一种机械化学强化黄铜矿浸出的方法,将黄铜矿与氧化剂按质量比0~7:1进行混合,经行星式球磨机机械活化处理0.25~3h后,黄铜矿和氧化剂发生固相反应形成新的化合物,再经pH为1~7溶液在40~85℃下进行浸出,浸出时铜以铜离子的形式进入溶液中。与传统酸浸方法相比,本发明具有更快的浸出速率,且铜浸出率高达98%,因此具有广大的应用前景。
本发明公开了一种溶解废旧催化剂中贵金属的方法,将废旧催化剂经过破碎机初步粉碎,再将粉碎后的催化剂粗粉末与王水、刚玉磨球按一定质量比混合后装入行星球磨机中进行球磨,球磨结束后过滤粉末得滤液,滤液为贵金属的溶解液;球磨后的粉末经过洗涤后重新装入球磨罐,再添加王水进行二次球磨,如此反复2‑3次,则废旧催化剂基体中的贵金属全部溶解于王水中;本发明的有益效果为简化了工艺流程,提高了劳动生产率,节约了成本,提高了贵金属直收率;通过行星球磨的过程中实现了贵金属的充分溶解,行星球磨机可以将废旧催化剂粉末充分细化至1微米以下,粉末活性大大提高并与王水充分反应,贵金属溶解率超过99%。
一种适用于各种类型复杂金精矿独立冶炼的方法,属于黄金冶炼技术领域,包括以下步骤:(1)将金精矿原料配入熔剂后熔炼,使金银富集在锍中,硫氧化进入熔炼烟气,得到金银富集物Ⅰ、熔炼渣和熔炼烟气;(2)将金银富集物Ⅰ通过湿法回收,得到金产品、银产品和浸出渣;(3)将熔炼烟气经余热利用、收尘后制取硫酸。当金银富集物Ⅰ含铜量较高时,可将金银富集物Ⅰ经过吹炼二次富集金银得到金银富集物Ⅱ,金银富集物Ⅱ再进入步骤(2)湿法回收处理。本发明可处理各种类型复杂金矿、复杂金精矿及二次物料,工艺技术及装备成熟,易于实现工业应用,有效降低烟尘率,不产生氰化渣或含氰废水,经济效益和社会效益显著。
本发明涉及电池回收技术领域,公开一种镍氢电池模组破碎高效分选装置及方法,包括破碎机;干燥破碎混合物料的干燥机;筛分干燥混合物料分离出正负极粉的振动筛;对筛分物行磁选分离分别得到塑料外壳、夹带少量正极片的隔膜、负极钢网、正极片的磁选机;对磁选所得物料清洗以使负极钢网上的负极粉、隔膜上吸附的正负极粉洗脱至清洗水中的清洗机;压滤清洗水以回收正负极粉的压滤机;还包括用于往破碎机内通入惰性气体的进气口和确保破碎机内为绝氧环境的抽气口,电池模组在破碎机内无需放电即可进行破碎,不会有爆炸风险,大幅提升生产效率;仅设置振动筛、磁选机、清洗机即可实现各物料分类回收,减少正负极粉流转工序,确保电池回收价值最大化。
本发明公开了锌镍电池正极分离方法,它包括:锌镍电池正极片加入硫酸、双氧水,加热溶解;加入硫代硫酸钠,过滤除铜;3)调整pH值为4.5,加入双氧水,加热搅拌,过滤除铁;加入氟化钠,过滤除钙、镁,得到含镍、钴、锌的混合硫酸盐;配制氢氧化钠溶液,标为B溶液,配制氨水,标为C溶液;分别用三个泵将A、B、C溶液泵入反应釜中反应48~52h;排出物料,进行固液分离、洗涤、干燥,得到氢氧化镍;一种锌镍电池回收利用方法,它包括:1)电池测电压,放电,拆解,分离正极、负极、ABS塑料外壳、隔膜,分别水洗;ABS粉碎、造粒;2)锌镍电池正极分离制备氢氧化镍;3)称取锌镍电池负极片,制备硫酸锌结晶。
富氧侧吹炉熔炼处理废旧电路板的方法,属于废旧电路板火法处理技术领域。包括以下步骤:(1)将废电路板破碎;(2)将电路板碎料与辅料配料;(3)将步骤(2)所得混合炉料送入侧吹炉中富氧熔炼,得到高温熔体及高温烟气;(4)将高温熔体送入电炉沉降分离,分别从放铜口和放渣口放出粗铜和炉渣;(5)将高温烟气送入燃烧室燃烧,然后送入余热锅炉回收余热及部分收尘,经骤冷塔降温后送入布袋收尘装置捕集熔炼烟尘,由排风机送入二次喷淋塔喷淋处理,最后经电除雾器处理后排空。本发明造锍过程迅速,可以较好捕集废电路板中的贵金属,充分回收资源,有效防止和减少二噁英的生成,具有处理效率高、成本低和环保性好的优点。
本发明提供了一种含锑废水的处理方法,包括以下步骤:S1、将含锑废水在氯化钠存在下用硫酸调节pH值不超过0.3,反应,得到第一混合溶液;所述含锑废水包含砷、锑和铋;S2、将所述第一混合溶液固液分离,取液相用氢氧化钠调节pH值为0.8~1.5,反应,得到第二混合溶液;S3、将所述第二混合溶液固液分离,得到氯化锑固体产品。本发明含锑废水中锑的回收率可达95%,回收率较高;其还可制备以锑为主的络合沉淀剂,其纯度高;此络合沉淀剂净化电解液砷、铋效果显著。本发明处理方法工艺简单、成本低、稳定性高,易于工业化推广应用。
本发明涉及一种研究稀土回收的方法,属于稀土冶金技术领域。将CaO粉末,SiO2或Al2O3粉末,Gd2O3或Sc2O3或Sm2O3粉末,混合均匀配置成若干份;将得到的若干份粉末分别放到80%Pt‑20%Rh折叠信封状的箔片中,然后将80%Pt‑20%Rh折叠信封状的箔片分别放到刚玉舟中,在真空度为1×10‑3Pa下,再通0.016L/min氩气,分别在1773K或1873K下保温24h得到样品;将得到的样品放入冰水中进行淬火,然后把淬火样品嵌入到树脂中,进行磨平,抛光处理,进行EPMA分析测试;经过EPMA分析测试后,确定元素组成、相成分和相的微观结构,然后通过计算,利用热力学计算软件绘制出等温截面相图。本发明绘制出等温截面相图,从等温截面相图中可以清楚地解释该渣系中稀土元素的行为。
本发明公开了一种锂电池正极片的回收方法。一种锂电池正极片的回收方法,包括以下步骤:S1.将正极极片材料和金属盐在水溶液中发生反应;所述金属盐中金属的标准电极电位高于铝的标准电极电位;S2.以酸和还原剂的混合溶液溶浸步骤S1所得固体;S3.对步骤S2所得浸出液进行除氟处理后,萃取其中的过渡金属,并沉淀析出萃余液中的锂。本发明的锂电池正极片的回收方法,通过各步骤以及所用原料间的配合,能够彻底去除正极极片材料中的铝杂质,以及浸出液中的氟杂质,同时保证正极极片材料中有价金属的损失率≤0.1%。
本发明涉及一种有色金属电积用WC颗粒增强低银铅合金复合阳极板及制备方法,属于阳极板技术领域。本发明有色金属电积用WC颗粒增强低银铅合金复合阳极板,包括铅合金包铜导电梁、铅钙铝合金包覆层、铅钙铝合金板和低银铅合金板,铅钙铝合金包覆层包覆设置在铅合金包铜导电梁的外侧,铅钙铝合金板设置在铅合金包铜导电梁的底端,铅钙铝合金板与铅钙铝合金包覆层一体成型,低银铅合金板固定设置在铅钙铝合金板底端,低银铅合金板表面设置有复合WC活性颗粒和绝缘子。与传统的铅基多元合金相比,本发明WC颗粒增强低银铅合金复合阳极板在使用过程中具有优良的抗腐蚀性能,产生的阳极泥少,阴极产品品质高,有色金属电积中大幅降低电解槽电压,降低能耗。
本发明公开了一种电沉积金属的剥离系统,包括:机架为立式框架结构;伸缩式驱动装置固定设在机架上部,具有伸缩驱动端;阴极板支撑装置设在机架的中部;金属板接收斗设在机架的下部;剥离机构连接在伸缩式驱动装置的伸缩驱动端上,伸缩驱动端朝向阴极板支撑装置,能驱动剥离机构沿阴极板支撑装置支撑的阴极板作上下移动;设在机架上的剥离机构多向限位装置与剥离机构连接,由剥离机构多向限位装置对该剥离机构的上下移动进行多向定位;剥离机构包括:支撑架、左转轴、右转轴、左侧刀架、右侧刀架、主剥刀同步开合机构、主剥刀限位机构、两个夹角调整装置和主剥刀。该剥离系统能在从阴极板上剥离电沉积金属的过程中,避免损伤阴极板。
一种制备氢化-歧化-脱氢-重组稀土永磁粉的方法,涉及磁性材料制备技术。其特征在于:先将烧结稀土永磁再生料进行清洁处理,干燥后置于氢气处理装置中,通氢气得含氢的粗粉,再将其粉碎后置于氢化-歧化-脱氢-重组(HDDR)制粉设备中,抽真空后通入氢气,然后加热到650-900℃并保温,再快速冷却至室温。将粉体粉碎即可制备出各向同性HDDR稀土永磁粉。为了获得各向异性磁粉,将粉料的含氢粉置于HDDR制粉设备中,抽真空后快速升温至800-950℃,通氢气,保温,再将氢气压力降到0.01MPa,保温,然后快速冷却至室温。利用本发明的方法制备出的HDDR各向异性磁粉,磁性能高,工艺简单,成本低。
本发明属于液液萃取装置领域,特别涉及用于反胶团萃取蛋白质过程中轻相或重相分散低剪切力自吸式搅拌萃取装置和操作方法。在自吸式搅拌器2下部与转轴3连接的是转鼓4和转盘5。本发明在保持两相界面清晰的情况下,可以进行间歇和连续操作,在轻相分散时,转鼓位于重相料液的下部,转盘位于轻相料液的中部;在重相分散时,转鼓位于轻相料液的上部,转盘位于重相料液的中部。本发明适用于易乳化体系萃取,解决了两相分离困难问题。
本发明提供一种萃取分离In和Fe、Zn的微流体萃取方法,将含铟、铁、锌的硫酸体系溶液作为水相、经溶剂油稀释的P204萃取剂作为有机相分别通入两台流量泵内,流量泵的出口端连接微反应器入口;同时通过光学显微镜观察微通道内形成的两相层流相界面,使两相平行流动至微通道出口的Y型岔口处时开始分离,从各自出口流出微反应器,并对两相分别收集,铟被萃取进入有机相,而铁和锌留着水相中,实现了铟与铁、锌的分离。In萃取率可达到90%以上,而Fe和Zn离子则完全不被萃取,而且未出现乳化现象,反应所需时间大大缩短,能减少萃取剂的用量和耗量,条件可控性强,安全性高,避免了萃取有机溶剂暴露在空气中。
本发明属于电池领域,公开了一种基于回收铅膏的水系锌离子电池材料的制备方法,包括以下步骤:1)将废旧铅酸电池拆解,物理分离提取铅膏;2)将铅膏通过机械球磨,获得铅膏颗粒;3)将铅膏颗粒去除水分,得到脱水铅膏;4)将脱水铅膏与导电剂、粘结剂充分混合搅拌,得到锌离子电池浆料;5)将锌离子电池浆料用辊压机辊压,得到薄片活性电极;6)将薄片活性电极辊压复合到金属网格集流体上,得到水系锌离子电池活性电极。本发明解决了现有从废旧铅酸电池提取铅膏后,存在处理工艺复杂、成本高、能耗大、污染高及回收率低等问题,提供了一种直接提取铅膏用于新型绿色水系储能电池体系的方法。
本发明公开了一种处理红土镍矿的系统和方法,该系统包括:预处理单元,具有红土镍矿入口和红土镍矿颗粒出口;混合造球装置,具有红土镍矿颗粒入口、还原剂入口、硫化剂入口和混合球团出口;预还原硫化装置,具有混合球团入口和焙砂出口;熔炼装置,具有焙砂入口、熔炼溶剂入口、可燃料入口、富氧空气入口、第一低镍锍出口和熔炼渣出口;吹炼装置,具有第一低镍锍入口、吹炼溶剂入口、高镍锍出口和吹炼渣出口。该系统用于处理红土镍矿效率高、能耗低且金属回收率高。
本发明提供一种红土镍矿硫酸浸出液和硅胶螯合树脂提纯生产硫酸镍钴的方法,包括:1)将红土镍矿(褐铁矿型、过渡层型、腐质层型)磨矿至‑0.15mm占95%以上的矿粉;2)将磨矿后的红土镍矿过渡层型加入硫酸和水进行常压浸出,分离浸出液1和滤渣1;3)褐铁矿型放入高压釜,加入硫酸和水进行高压浸出,分离浸出液2和滤渣2;4)将浸出液加入到腐植层红土镍矿中进行中和除杂浸出,分离中和液和滤渣3;5)加入双氧水反应沉淀,固液分离,分离出滤液和滤渣4;5)将滤液进行硅胶螯合树脂分离生产硫酸镍和硫酸钴;6)在滤渣中加入煤粉,进行磁化焙烧,然后进行弱磁磁选,分离出铁精矿和尾渣;7)尾液除锰;8)尾渣排放。
本发明公开了一种溶液除铁方法以及铁基吸附材料的制备方法。在含亚铁离子溶液中加入具有吸附功能的载体并通入一定流量的空气/氧气,以金属氧化物MeO或金属碳酸盐MeCO3为中和剂,在一定的温度、pH值条件下进行高剪切氧化除铁反应。反应结束后,液固分离得到的沉铁产物在酸性溶液中进一步改性反应一定时间后液固分离,之后洗涤、烘干,得到性能良好的铁基吸附材料。本发明方案不仅能实现溶液高效除铁,而且可将得到的除铁产物直接制备得到性能良好的铁基吸附材料,实现铁资源的高值化利用。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!