本发明涉及一种碳纤维/纳米纤维协同强韧陶瓷基复合材料及其制备方法,该制备方法借助上浆工艺将碳纳米管、SiC纳米线引入碳纤维,经纺织成型手段织造出多尺度预制体,通过化学气相渗透法、反应熔渗法、先躯体浸渍裂解法等工艺陶瓷基体致密化,制备出碳纤维/纳米纤维协同强韧陶瓷基复合材料;本发明提供的制备方法使碳纤维/碳纳米管/SiC纳米线的多尺度结构充分发挥尺度效应,协同强韧陶瓷基复合材料,借助浆纱工艺制备多尺度预制体,在不损伤碳纤维本身性能的前提下,满足大型、异型结构件的量产,解决了多种纳米纤维同时引入的技术问题,且实现了对掺杂纳米纤维含量、分布的控制,具有设备简单、工艺操控易、成本低的优点,利于大规模工业化生产。
本发明提供了一种基于石墨烯蜂窝结构的电磁屏蔽复合材料,属于电磁屏蔽领域。包括以下质量份数的组分:1.1~2.6重量份的蜂窝结构石墨烯、100重量份的环氧树脂和26.5重量份的固化剂。本发明的电磁屏蔽复合材料的蜂窝壁由石墨烯贯穿构成,结构排列均匀,形成了完整的导电通路,电磁波在进入蜂窝结构之后在蜂窝内部会经过多次反射、散射和吸收等过程,这种结构可以极大改善电磁波在材料内部的多重吸附,反射和散射,延长电磁波在材料内的路径,更易实现电磁波在结构中“透、吸、散”波的作用,提高复合材料的导电和电磁屏蔽性能。并且本发明中蜂窝结构石墨烯呈现出一种接近于中空的状态,可以显著减轻材料的重量。
硅酸亚铁锂正极复合材料的制备方法,具体按照以下步骤实施:步骤1,将碱性SiO2乳液用有机酸调节至pH为2~7,然后加入草酸搅拌溶解均匀后再加入硫酸亚铁和溶剂1的混合液,洗涤、过滤干燥后得到草酸亚铁包覆SiO2的壳核材料;步骤2,向步骤1得到的草酸亚铁包覆SiO2的壳核材料中加入锂源化合物和碳源化合物,最后经过烧结后随炉冷却,研磨,即得到硅酸亚铁锂正极复合材料。本发明制备得到的硅酸亚铁锂正极复合材料粒度细小均匀,形貌可控,有利于提高材料的电导率,低温和大电流放电下的性能也有所改善,且其制备方法简单,合成方便。
本发明涉及一种基于随机顺序生长法复合材料三维微观体胞模型创建方法,该方法随机向基体区域添加纤维,纤维的长度从零开始生长,直到与已存在的纤维相交或达到最大的预设长度。与传统的随机顺序吸附法相比,成功添加一根纤维只需进行数次纤维相交判断,因此本方法能够简单、高效地创建具有较高纤维体积分数(~25%)的随机分布短纤维增强复合材料三维微观周期性体胞模型。本方法可应用于建立表征短纤维增强复合材料微观结构的三维微观周期性体胞模型,解决了现有方法创建微观周期性体胞模型中纤维体积分数低、执行效率低的问题,能节省较多的计算资源。
本发明提供了一种层状MoS2?Fe3O4纳米复合材料的制备方法,将二硫化钼粉末加入分层溶液中进行分层反应,反应完成后过滤,烘干,得到分层二硫化钼粉末;将硝酸铁与柠檬酸混合后加入水中,进行螯合反应,得到黄色溶胶溶液;向黄色溶胶溶液中加入分层二硫化钼粉末,搅拌混合后得到混合凝胶溶液,干燥后得到干凝胶,研磨得到干凝胶粉末;将干凝胶粉末和爆炸剂混合,进行爆炸反应,冷却至室温后取出爆炸反应产物,即得到层状MoS2?Fe3O4纳米复合材料。本发明通过溶胶?凝胶法与爆炸高温冲击结合,将分层二硫化钼与溶胶融合后,仅用一步爆炸即完成了Fe3O4的迅速还原和MoS2的剥离,成功制备了层状MoS2?Fe3O4纳米复合材料。
一种通过利用具有紫外光敏特性的硅钛有机-无机复合材料来制备功能化条形波导的方法,利用改进溶胶-凝胶法、旋涂技术以及紫外-固化压印技术,结合低温有机-无机复合材料的制备技术,以有机改性硅酸盐为材料基础,掺入了光敏材料和具有三阶非线性特性的分散红13染料,制备出了具有紫外光敏特性和三阶非线性特性的硅钛有机-无机复合材料,通过后期的压印制得了功能化的条形波导。本发明制得的材料有良好的波导特性及三阶非线性特性,可作为光传输和全光开关的材料;光敏材料的加入使得图形化的器件制备变得简便、低成本且可重复性好,这种将材料与器件的制备结合在一起的制备方法在现代集成光学应用领域具有巨大的潜力。
本发明涉及一种采用化学气相渗透法制备透波纤维增韧氮化硼陶瓷基透波复合材料的方法。采用透波纤维织物作为预制体,首先采用丙酮清洗和空气中热处理的方法去除预制体中的杂质。采用BCl3-NH3-Ar-H2先驱气体体系,通过化学气相渗透工艺制备BN基体。该方法所采用的化学气相沉积法为制备透波纤维增韧氮化物陶瓷基透波复合材料提供了新思路。所采用的方法有效降低了复合材料的制备温度,可根据不同纤维增强体选取合适的制备温度,从而减小了对纤维的损伤。所制备的氮化硼陶瓷基体不仅致密均匀有利于承载和保护纤维,而且陶瓷化程度和纯度高,透波性能优异。
一种TiC/Al2O3复合材料及其制备方法,利用占总重量(0-76.94)%的Ti粉、(1.06-28.14)%的Al粉、(9.39-19.66)%的C粉、(2.35-62.47)%的TiO2粉以及(0.5-1)%硬脂酸钠分散剂经高能球磨后,原位反应生成超细化TiC/Al2O3复合材料,本发明制造成本较低,材料成分可调性大,烧成温度低,结构均匀致密,拓宽了该复合材料的应用范围。
本发明公开了一种Cu/Al复合材料及其制备方法,是为了解决现有铝粉熔点高,氧化峰温较高,放热速率较慢的问题。本发明涉及的Cu/Al复合材料,形状为球形,铝元素与铜元素质量比为4:1由单质铝和CuAl2两种物质组成;Cu/Al复合材料熔化温度为550℃,TPO氧化峰温为550℃与对比文献相比,分别降低了110℃和50℃,与同样条件制备的铝粉相比,放热过程集中,温度跨度由500‑650℃变为500℃‑600℃,放热速率提升了50%。
一种多孔硬碳/红磷复合材料的制备方法,将白桦木屑经氢氧化钾混合加热处理后在氩气中煅烧,干燥,得到多孔硬碳;将多孔硬碳与红磷混合研磨,混合均匀,在真空条件下密封在玻璃管中煅烧,清洗,干燥,得到多孔硬碳/红磷复合材料。本发明通过构建含有大量微孔结构的多孔硬碳为红磷提供了大量的吸附生长位点,通过空间限域的作用实现了红磷的结构纳米化,同时,碳材料有效了改善了红磷的导电性;本发明制备的多孔硬碳/红磷复合材料原材料绿色无毒、价格低廉,在保证安全环保的前提下提高了电池性能,降低了生产成本,适合大规模生产。
一种可控偏置连续纤维增强复合材料的直写3D打印装置及方法,装置包括外部装置固定的料筒,料筒底部连接喷头,喷头下方设有打印底板;料筒一侧通过软管连接溶液储存腔和气泵;料筒内部设有推杆,推杆具有一个盛装密封液的腔室和一个用于通过连续纤维的毛细管,推杆顶部有小孔,从小孔引出的连续纤维与张紧轮相连;推杆与连接轴固连,连接轴通过旋转轴承与外部的竖直运动装置相连,同时通过带轮与电机相连;料筒的内外径中心不重合;利用推杆实现连续纤维在复合材料中的偏置位置,每一根复合材料的打印过程分为旋转、挤出、转动、固化步骤;本发明制备结构同时具备较高的力学性能和突出的智能特性,且结构中连续纤维材料的偏置位置可精确调控。
本发明公开了一种SnO2/石墨烯复合材料及其制备方法和应用,属于新能源材料技术领域,包括如下步骤:以金属Sn箔为靶材,去离子水为溶剂,采用液相脉冲激光辐照技术制备SnOx胶体溶液;将SnOx胶体溶液滴加至氧化石墨烯溶液中混合分散均匀后进行水热反应,产物经冷冻干燥后得到SnO2/石墨烯复合材料;本发明所制备的SnO2/石墨烯复合材料由于水热过程中SnOx与氧化石墨烯发生原位氧化还原反应,实现了超细SnO2量子点在还原氧化石墨烯片层墙上共价键合的均匀紧密锚定;在高负载SnO2量子点时也能够保持还原氧化石墨烯的多孔结构。
本发明公开了一种多孔金属装载硝酸盐自发汗复合材料及其制备方法,该复合材料中,以体积分数计,硝酸盐的装载量为8.58%~47.7%,多孔金属的体积分数为52.3%~91.42%,多孔金属中有57.2%~95.4%的孔隙被硝酸盐填充。本发明所制备的多孔金属装载硝酸盐自发汗复合材料可以根据外界热流密度的不同利用不同的冷却机理对基体材料实现一定程度的“智能冷却”,同时其制备方法简单且制备过程中硝酸盐不会对炉体产生污染,具有良好的应用前景及使用价值。
本发明公开了一种快速制备高强韧层状钛基复合材料的方法,该方法包括:一、将氧化石墨烯分散后加入硝酸铝搅匀得到混合溶液,将钛箔清洗吹干;二、以经吹干后的钛箔为阴极、铜片为阳极、混合溶液为电泳沉积液进行电泳沉积,形成沉积氧化石墨烯涂层的钛箔;三、将沉积氧化石墨烯涂层的钛箔堆叠后烧结得到层状氧化石墨烯增强钛基复合材料。本发明通过电泳沉积调控氧化石墨烯在钛箔表面的分散和分布,得到沉积氧化石墨烯涂层的钛箔,经烧结后氧化石墨烯与其沉积的钛箔以及堆叠上方的钛箔生成少量碳化物作为连接层,提高了氧化石墨烯和钛箔之间的界面结合强度,赋予层状氧化石墨烯增强钛基复合材料高强高塑特性,避免引入杂质且缩短了制备时间。
本发明属于重金属吸附技术领域,具体涉及一种用于吸附重金属离子的硫铝酸盐水泥‑膨润土复合材料及其制备方法和应用。以质量份数计,该复合材料的制备原料组成如下:硫铝酸盐水泥为25~75份,膨润土为25~75份,以及水。将硫铝酸盐水泥、膨润土和水在磁力搅拌机中均匀混合,搅拌速度为1000~1500rpm,搅拌时间2‑3h;然后将混合物密封保存在20±2℃条件下静置7d后,离心、过滤,分离后的固体置于35‑40℃的真空干燥箱中干燥;干燥后的固体经研磨后过100目筛,即可制得用于吸附重金属离子的硫铝酸盐水泥‑膨润土复合材料。本发明使用硫铝酸盐水泥和膨润土复合制成吸附剂材料,对重金属离子的吸附效果较好、吸附剂制备成本低、处理工艺简单,适合推广应用。
本发明公开了一种以固体碳源在铜粉表面原位制备的3D石墨烯/铜复合材料及其方法,以不锈钢球、铜粉、氧化镁和聚甲基丙烯酸甲酯作为原料,以乙醇作为球磨介质,混合得到混合溶液;去除乙醇,过筛得到干燥且均匀分散的铜/氧化镁/聚甲基丙烯酸甲酯粉末;将铜/氧化镁/聚甲基丙烯酸甲酯粉末分别进行低温还原和高温还原处理,得到原位生长的3D石墨烯/铜、氧化镁混合粉末;用稀盐酸酸洗除去3D石墨烯/铜、氧化镁混合粉末中的氧化镁,然后用乙醇清洗并烘干,得到原位生长的3D石墨烯/铜复合粉末;将3D石墨烯/铜复合粉末经真空热压烧结成型制得3D石墨烯/铜复合材料。本发明制备工艺简单,得到的复合材料抗拉强度高,导电性好,具有很好的应用前景。
本发明公开了一种碳纤维/玻璃纤维混杂隐身复合材料的制备方法,具体为:以碳纤维为芯纱,玻璃纤维为编织纱,采用二维编织技术将芯纱和编织纱编织成碳纤维/玻璃纤维包芯纱;然后将碳纤维/玻璃纤维包芯纱织成布,最后利用树脂传递模塑成型工艺将布与环氧树脂进行复合固化,即制得碳纤维/玻璃纤维混杂隐身复合材料。本发明通过碳纤维/玻璃纤维包芯纱结构,利用玻璃纤维的透波性能,使电磁波能够最大限度的进入到包芯纱线内部,然后利用碳纤维的电阻损耗将电磁波能量转化为热能或其他形式的能而耗散掉。同时碳纤维作为芯纱,基本上处于伸直状态,这样可以有效的发挥其力学性能,使得制作的隐身复合材料具有良好的力学性能。
本发明公开了一种三重响应性的介孔硅包覆碳纳米管接枝嵌段共聚物复合材料及其制备方法和应用。本发明通过在介孔硅包覆碳纳米管表面引入巯基和二硫半胱胺基、Br基,然后通过原子转移自由基反应在其表面接枝聚氮异丙基丙烯酰胺和聚(2‑(4‑甲酰基苯甲酰氧基)乙基甲基丙烯酸酯,形成嵌段共聚物复合材料。本发明介孔硅纳米管接枝嵌段共聚物复合材料可以借助席夫碱结构实现药物的共价结合,并通过物理吸附进一步提高载药效率;并表现出独特的温敏性、pH响应性及谷胱甘肽还原响应性,能够根据生理环境变化有效而协同地调控药物释放,达到更好的靶向可控释放效果。
本发明公开了一种改性纳米铁酸钴/聚芳醚腈介电复合材料,以聚芳醚腈为基体,以改性纳米铁酸钴为填料;改性纳米铁酸钴为以纳米铁酸钴为内核,以改性剂的高聚物或分解物为外壳的核壳结构。本发明还公开了一种改性纳米铁酸钴/聚芳醚腈介电复合材料的制备工艺,该工艺将改性纳米铁酸钴加入到DMSO中并加入酚酞啉、2,6‑二氯苯腈、无水K2CO3和甲苯进行反应,经稀释、沉降、纯化和干燥后热压成型得到产物。本发明介电复合材料的核壳结构提高了改性纳米铁酸钴和聚芳醚腈的相容性,从而提高了材料的介电常数;本发明的方法提高了改性纳米铁酸钴在聚芳醚腈中的分散性,进一步提高了材料的介电常数,同时增强了材料的机械性能。
本发明提供一种碳/碳复合材料外涂层的制备方法:将ZrSiO4粉体以及B2O3粉体混合分散于异丁醇中配制成悬浮液A,超声震荡后在磁力搅拌器上搅拌;向悬浮液A中加入碲单质,超声震荡后边加热边搅拌得悬浮液B,将悬浮液B倒入水热釜内,进行磁控脉冲水热电泳电弧放电沉积;将试样放入电热鼓风干燥箱中在60~100℃下干燥2~4h,本发明制备的碳/碳复合材料外涂层表面无裂纹,在低温下即可获得结构可控且性能良好的碳/碳复合材料ZrSiO4-B2O3复合外涂层,工艺制备简单,操作方便,原料易得,制备成本较低。
本发明提供一种碳/碳复合材料ZrO2颗粒及莫来石晶须协同增韧MoSi2复合涂层的制备方法:将莫来石晶须、二硅化钼粉体以及ZrO2粉体分散于丙二醇中,磁力搅拌得悬浮液A;向悬浮液A中加入碘单质,边加热边磁力搅拌得悬浮液B;将悬浮液B倒入水热釜内,将带有SiC涂层的碳/碳复合材料试样夹在水热釜内的阴极夹上,然后在阴极旋转条件下进行水热双脉冲电泳沉积反应;将取出的试样干燥,本发明制备的碳/碳复合材料ZrO2颗粒及莫来石晶须协同增韧MoSi2复合外涂层表面无裂纹,结合于基体的涂层结合强度大;本发明在低温下即可获得结构可控且性能良好的复合外涂层;本发明工艺制备简单,操作方便,原料易得,制备成本较低。
一种制备C/C?SiC复合材料的方法,将腰果壳液改性酚醛树脂与碳化硅粉体混合均匀,得到混合粉体;将低密度多孔C/C复合材料切割成圆形薄片;将混合粉体与无水乙醇混合,搅拌均匀,得到悬浮液A;将圆形薄片平放于玻璃砂芯抽滤装置内,然后将悬浮液倒入真空抽滤平底漏斗中,抽滤后将试样热处理后均相水热处理,并重复水热处理直至复合材料的密度达到1.5~1.7g/cm3,最后热处理。本发明在以通过真空抽滤法将SiC相以及有机树脂入到碳/碳基体中,避免了前驱体浸渍裂解等方法较长的制备工艺以及高温对碳纤维的损伤,以腰果壳液改性酚醛树脂以及蔗糖为原材料,成本低廉,反应产物环境友好无污染,工艺时间短,温度低、效率高。
本发明涉及具有高识别能力的湖泊底泥/粉煤灰复合材料的制备方法,该方法是以湖泊底泥和粉煤灰共同作为载体,加入碱性活化剂后对其表面固载巯基硅烷,形成对三价砷具有很高识别能力的湖泊底泥/粉煤灰复合材料。同现有技术相比,本发明制备的具有高识别能力的湖泊底泥/粉煤灰复合材料,是对工业废弃物的资源化综合利用,以废治废,有利于环境保护,同时为粉煤灰的资源化用开辟了一条新途径;另外载体与秋季硅烷结合力强,在水体中不会发生水解同时,对三价砷具有较高的吸附选择性。
本发明公开了一种短切碳纤维/碳化硅复合材料及其制备方法,属于纤维增强复合材料制备技术领域。本发明采用短切碳纤维作为增韧纤维,以碳化硅前驱体为主要粘结剂和碳化硅来源,加以填料充分混合均匀,然后使用低温加压固化(先4~10MPa、100~300℃真空压制,然后于4~10Mpa、500~600℃真空压制,除去小分子,保证胚体致密性)、中高温烧结(800~1600℃下烧结)的方法制备得到短切碳纤维/碳化硅复合材料。该方法具有操作简便,烧结温度低的特点,制成的材料具有高比强度、高耐热、耐氧化性能,多种粉体的加入可满足不同使用要求。
本发明涉及一种高强度有机累托石/尼龙纳米复合材料及其制备方法,其特征在于组分组成质量份数百分数为:有机累托石粘土1~10,尼龙90~99;所述有机累托石粘土是用C12~C18长链有机季铵盐或C12~C18长链有机二元胺对累托石进行有机阳离子交换插层处理得到的;所述累托石为纯度70%的钠基累托石;所述有机插层剂为分子结构中含有一个碳原子个数为12~18的直链烷基季铵盐或含有两个碳原子个数为12~18的支链烷基二元胺。本发明采用熔融共混法制备纳米复合材料,是一种直接、无污染、适用范围广、操作工艺简单、成本低廉的制备纳米复合材料的方法。
本发明公开了一种碳-铝复合材料的制备方法,本发明包括以下步骤:1)将0.5-1g亚微米铝粉平铺于固定床的石英舟内,用氩气吹扫固定床;2)在流速为80ml/min~100ml/min,氩气和氢气混合气体的体积比为1∶1~2∶3的混合气氛下,以4℃-8℃/min的升温速率,使固定床内温度升温至500℃,保持温度500℃1-2h;3)关闭氩气,在温度500℃,流速为100ml/min,通入原料气与H2混合气体,持续时间为0.5~1h,在Ar气氛下自然冷却至室温,得到碳-铝复合材料。本发明主要用于制备碳-铝复合材料。
本发明公开了一种用于超导腔的铜铌复合材料板的制作方法,包括以下步骤:在金属铌板上铺设无氧纯铜粉末,通过激光束照射无氧纯铜粉末,利用激光的能量将无氧纯铜粉末加热至完全融化,并与金属铌板表层熔化,以形成铜铌复合物,然后通过重复铺粉及熔化成型,以形成铜铌复合材料板,该方法能够制备得到的铜铌复合材料板能够用于超导腔。
本发明提供一种花状形貌的SnS2/SnS复合材料的制备方法,以氯化亚锡为锡源,以硫代乙酰胺为硫源,以去离子水为溶剂,混合搅拌并加入适量氨水后得到混合料液;对混合料液进行水热反应后冷却至室温得到反应产物;对反应产物进行洗涤、烘干得到花状形貌的SnS2/SnS复合材料;其中,氯化亚锡与硫代乙酰胺的质量比为1:(3.5~4.5),氨水的添加量为0.20~0.25ml;水热反应的温度为160~180℃,反应时间为6~12h;的花状形貌的SnS2/SnS复合材料由花状颗粒组成,的花状颗粒的平均粒径为2~3μm。
本发明一种采用无压浸渗制备高体积分数SiC颗粒增强Cu基复合材料的方法,包括:步骤1,制备多孔碳化硅陶瓷框架;制备偏钨酸铵溶胶;步骤2,将偏钨酸铵溶胶浸入到多孔碳化硅陶瓷框架中,然后干燥并在空气气氛中煅烧,然后在氢气气氛下煅烧还原,得到含有钨涂层的多孔碳化硅陶瓷框架;步骤3,将含有钨涂层的多孔碳化硅陶瓷框架和铜在加热条件下进行无压浸渗,得到高体积分数SiC颗粒增强Cu基复合材料。本发明在多孔碳化硅陶瓷框架的孔道表面形成钨涂层,钨与铜的润湿角小于10°,所以钨涂层改善了碳化硅、氧化硅与铜的润湿性,从而保证能够利用无压浸渗的方法得到高体积分数SiC颗粒增强Cu基复合材料。
本发明公开了一种氧化石墨烯‑聚乙二醇交联网络/碳微球复合材料的制备方法,在不加入引发剂和交联剂的条件下制备出氧化石墨烯‑聚乙二醇交联网络/碳微球复合材料,制备过程简单且没无有害物质产生;此外,本发明所制备的高性能纳米复合材料能够在摩擦过程中降低机械的摩擦系数和磨损率,进而延长机械使用寿命,且成本低,具有一定的商用前景。
中冶有色为您提供最新的陕西西安有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!