本发明提供一种防静电复合材料、制备方法及防静电外壳与净化器。该防静电复合材料,包括树脂、抗静电剂、硅烷偶联剂和增溶剂,通过限定树脂、抗静电剂、硅烷偶联剂和增溶剂的含量,使防静电复合材料的电阻在106‑109Ω之间,同时使各原料之间达到临界磨合点,提高了抗静电效果,从而通过该防静电复合材料加快静电在其中的衰减与逸散,在不影响净化器外壳内表面静电的同时,阻隔了静电传递过程,让净化器外壳内表面的静电影响不到净化器外壳外表面,解决了外壳外表面集灰及影响操作人员安全的问题,同时提高了净化器的集尘效率。
本发明属于石墨烯复合材料技术领域,尤其涉及一种直立石墨烯‑高分子聚合物复合材料,包括衬底、直立型石墨烯和高分子聚合物,所述直立型石墨烯生长于衬底表面,所述高分子聚合物固化成膜并均匀负载于直立型石墨烯表面和边缘。相对于现有技术,本发明提供的直立型石墨烯‑高分子聚合物复合材料,在脱离衬底的同时,保持直立型石墨烯的独特形貌和超大表面积,并利用其底部的平面石墨烯层。同时,高分子聚合物可对直立型石墨烯和表面负载的活性物质进行保护固化,增加材料使用寿命,此外,通过调节高分子聚合物薄膜的孔道结构,促进直立型石墨烯与外界的物质交换,提高反应效率。本发明还公开了一种直立石墨烯‑高分子聚合物复合材料的制备方法。
本发明涉及耐磨材料技术领域,具体公开了一种耐磨聚亚苯基砜复合材料及其制备方法。所述的耐磨聚亚苯基砜复合材料的制备方法,包含如下步骤:(1)将碳纤维放入浓酸中处理,得酸化碳纤维;(2)将酸化碳纤维与空心微珠加入含硅烷偶联剂的乙醇溶液中搅拌处理;接着转移至球磨机中进行球磨;球磨完成后分离固体得耐磨填料;(3)将耐磨填料与聚亚苯基砜树脂混合后放入挤出机中熔融共混并挤出,即得所述的耐磨聚亚苯基砜复合材料。由该方法制备得到的聚亚苯基砜复合材料具有较好的耐磨性能。
一种提高界面剪切强度复合材料的制备方法,涉及材料表面改性技术领域。本发明的目的是要解决现有碳纤维环氧树脂基复合材料界面剪切强度低的问题。方法:先通过表面接枝的方式制备得到表面接枝纳米SiO2的碳纤维,再制备改性Gd2O3/环氧上浆剂,采用改性Gd2O3/环氧上浆剂对表面接枝纳米SiO2的碳纤维进行浸渍,干燥,得到提高界面剪切强度的复合材料。本发明可获得一种提高界面剪切强度复合材料的制备方法。
本发明提供了一种PA1010复合材料及其制备方法。所述PA1010复合材料由包括如下组分的原料制备而成:PA1010、乙烯基POSS‑g‑(EMA‑co‑GMA)、增强材料、抗氧剂、润滑剂。所述PA1010复合材料是通过先采用乙烯基POSS与EMA‑co‑GMA反应生成乙烯基POSS‑g‑(EMA‑co‑GMA),再与PA1010及增强材料熔融共混的方法制备得到。本发明提供的PA1010复合材料在具有较低的介电常数和介电损耗的同时,具有较高的耐热性和机械强度。
本发明公开了一种硫化银‑还原氧化石墨烯‑二氧化钛复合材料及其制备方法和应用。本发明的硫化银‑还原氧化石墨烯‑二氧化钛复合材料的组成包括二氧化钛薄膜以及修饰在二氧化钛薄膜表面的片状还原氧化石墨烯和硫化银颗粒,其制备方法包括以下步骤:1)通过阳极氧化法制备修饰有还原氧化石墨烯的二氧化钛氧化膜;2)将硫化银颗粒沉积到修饰有还原氧化石墨烯的二氧化钛氧化膜表面,即得硫化银‑还原氧化石墨烯‑二氧化钛复合材料。本发明的硫化银‑还原氧化石墨烯‑二氧化钛复合材料具有光催化活性高、化学稳定性高、生物相容性优良、成本低、安全无毒等优点,用于光催化降解罗丹明B的降解率高。
本发明提供了一种钼改性镍铝合金复合材料的制备方法,包括以下步骤:A)制备镍铝合金雷尼镍;B)将镍铝合金雷尼镍在钼源溶液中浸泡,洗涤、干燥,得到初始产物;C)将所述初始产物进行焙烧,得到钼改性镍铝合金复合材料。本申请还提供了钼改性镍铝合金复合材料在自热重整制氢中的应用。本申请提供的钼改性镍铝合金复合材料能够高质量催化苯自热重整制氢反应,并具有良好的活性、稳定性和选择性,寿命长,成本低廉,适用性广,为新型能源的开发与推广做出贡献。
本发明涉及建筑材料技术领域,具体提供了一种复合材料及其制备方法、改性方法和应用。该复合材料的制备方法,包括采用液态的金属和/或金属合金浸渍轻质骨料,过滤,收集滤渣,即得复合材料,该方法制得的复合材料能够形成有效的空气隔膜,对声音的阻隔作用大幅增强,材料表面凝结的金属锡呈无规则取向,可以大幅度提高的各个方向的热传导效率,具有良好的导热和隔音作用。
本发明属于微波通信技术领域,公开了一种用于微波基片的陶瓷填充聚四氟乙烯(PTFE)基复合材料的制备方法及其应用。该复合材料是将硅烷偶联剂加入去离子水中充分搅拌,使硅烷偶联剂水解,然后将钼酸铋粉末和短玻纤加入水解后的硅烷偶联剂中充分搅拌,制得改性的钼酸铋和改性的短玻纤;然后将改性后的混合物与PTFE充分球磨混合;再将上述混合物与水充分研磨混合后,在20~40MPa的压力下和120~150℃的温度下加热制得。本发明的复合材料可提高微波基片材料的介电性能和导热性能,解决了传统热压法制备PTFE基微波基片时PTFE与陶瓷填料与玻纤材料相容性差的问题,降低了烧结温度,提高了复合材料的致密度。
本发明涉及电池材料技术领域,尤其涉及一种硫/二硫化钒/MXene复合材料及其制备方法与应用。本发明公开的制备方法中,载硫材料MXene的高比表面积和大量的活性位点,可提高硫的负载量;MXene具有独特的柔韧性和良好的导电性,因而能够缓冲正极材料的体积变化以及提高复合材料的导电性;MXene表面带有大量官能团及静电可以吸引钒酸根离子进而发生配位作用,使钒酸根离子均匀的吸附在MXene表面,在适当的温度下使钒酸根离子与硫源在MXene表面原位生成均匀的二硫化钒纳米片,在MXene中引入具有催化活性且导电性良好的二硫化钒纳米片能够化学吸附多硫化锂,并且能够将其快速催化转化成在电解液中不可溶的Li2S2/Li2S,进而抑制严重的穿梭效应,提升锂硫电池的稳定性及循环寿命。
本发明公开了一种高致密度铝碳化硅复合材料制备方法,将铝颗粒分散在硅溶胶中,密封搅拌,过滤后干燥处理得到改性的铝粉;将获得的改性铝粉与氧化铝和高岭土混合后机械搅拌;将得到的粉体和碳化硅搅拌混合,再加入聚乙二醇液体保持转速继续搅拌得到陶瓷粉体;将陶瓷粉体压制制成成型毛坯,经热处理后随炉冷却得到气孔率30%~40%的碳化硅预制型;将得到的碳化硅预制型进行无压浸渗铝液;冷却处理后制得高致密度的铝碳化硅复合材料。本发明不但提高了铝液浸渗过程的润湿性,得到了高致密度的铝碳化硅复合材料,而且生成的莫来石晶须有利于提高复合材料的机械性能。
本发明公开了一种抗击穿绝缘复合材料,由以下重量份配比的材料制成:不饱和聚酯树脂、聚酰亚胺树脂、有机硅绝缘树脂、绢云母、萘杂环树脂、聚对苯二甲酸乙二醇酯、聚乙烯、顺丁橡胶、不饱和聚酯、聚有机硅氧烷树脂、钛酸酯、双硫醚、亚磷酸酯、磷酸三烯丙酯和双氰胺;采用高分子材料制备绝缘复合材料,使其具有良好的耐热性和超高的机械性能;绢云母和聚乙烯提高抗击穿性;磷酸三烯丙酯和双氰胺配合提高制备的绝缘复合材料的阻燃性;双硫醚可以有效地捕获氧化自由基或过氧化自由基,这时亚磷酸酯能够供给氢原子,使双硫醚再生,使之保持长久的抗氧效能,聚有机硅氧烷树脂具有超高的疏水性,能使制备的绝缘复合材料不被水侵蚀,增加其使用寿命。
本发明公开了一种多聚均三嗪及无卤抗静电阻燃超高分子量聚乙烯复合材料。所述多聚均三嗪具有很好的阻燃抗静电效果,可作为抗静电剂和阻燃剂添加在组合物中用于制备抗静电阻燃复合材料。本发明还公开了一种含有多聚均三嗪的超高分子量聚乙烯复合材料,其组成成分的重量份数为:超高分子量聚乙烯50~85份,多聚均三嗪及其衍生物2~20份,聚磷酸胺5~30份,多羟基化合物2~30份,流动改性剂0.1~10份,成核剂0.05~1份,偶联剂0.03~5份,抗氧剂0.02~5份。该复合材料的阻燃抗静电效果得到显著提升,且具有很好的力学性能,能广泛应用于电力、煤炭、冶金、化工、石油开采、海洋和市政等领域,尤其适用于煤炭、海洋等具有特殊要求的行业。
本发明属于橡胶材料技术领域,公开了一种木质素/丁腈橡胶复合材料及其制备方法。本发明的复合材料由包括以下质量份的组分反应得到:100份丁腈橡胶、10~100份木质素、1~15份反应性相容剂、0~15份改性剂A、0~10份改性剂B、5~15份硫化助剂。本发明可通过调节木质素、反应性相容剂、改性剂A及改性剂B的用量获得不同力学性能的复合材料,其拉伸强度可为10~30MPa,断裂伸长率为250~800%。本发明通过反应性相容剂、改性剂的作用,在木质素与丁腈橡胶相界面间构建非共价键连接的能量牺牲键作用,获得优良的综合力学性能,实现木质素对橡胶既增强又增韧,克服了因相容性差而导致复合材料物理性能差的问题。
本发明公开了一种玻璃纤维毡增强热塑性复合材料,主要由玻璃纤维毡和树脂基体热压而成,其中各组分的重量百分比为:玻璃纤维毡35‑60wt%;树脂基体40‑65wt%。其中,以重量百分比计,玻璃纤维毡包括玻璃纤维束90‑97wt%和粘接剂3‑10wt%;其中,玻璃纤维束长度为15‑70mm,纤维直径5~20um;玻璃纤维毡的粘接剂选自热固性粘接剂中的至少一种;所述的热固性粘接剂选自不饱和聚酯型粘接剂、聚氨酯型粘接剂、脲醛树脂中的至少一种;热塑性树脂在190℃,2.16 Kg负荷下,其熔体质量流动速率为25~60 g/10min。本发明的一种玻璃纤维毡增强热塑性复合材料具有低气味的优点,并且具有优秀的拉伸强度、缺口冲击强度和模压成型性。
一种长玻纤增强聚丙烯复合材料及其制备方法,包括以下步骤:先将聚丙烯树脂、PP‑g‑MAH、EMMA、EAA、聚丙烯断链剂、抗氧剂和润滑剂混合,经双螺杆挤出机塑化后,送至浸润机头与玻璃纤维熔融共混,牵引出料,切粒,得到长玻纤增强聚丙烯复合材料。该在搅拌中不易开散玻纤絮的长玻纤增强聚丙烯复合材料及其制备方法,通过采用适宜的聚丙烯、玻璃纤维、PP‑g‑MAH,尤其是EMMA、EAA及相对较优的加工工艺,有效避免了聚丙烯为主的熔融载体对玻璃纤维束包覆不佳的情况,在不影响长玻纤增强聚丙烯复合材料的物性、加工的前提下,有效地降低了玻璃纤维束的开散,一进步避免了形成玻纤絮团,堵塞自动上料管道或下料口。
本发明公开一种石墨烯-钛酸铋复合材料的光催化剂,该光催化剂由如下步骤制备:取硝酸铋溶解到pH值为0~1.5的硝酸溶液中,配置第一混合溶液;取钛酸酯溶解于分子量较大的醇溶液,得到第二混合溶液;取第一混合溶液与第二混合溶液混合成第三混合溶液,使第三混合溶液中铋/钛的摩尔比为1 : 10~12,并在第三混合溶液中以100ml加入0.5~2g的石墨烯,搅拌2~4h,并将反应溶液置于水热反应釜反应,反应后用去离子水洗涤试样多次,真空干燥后在350℃~500℃进行高温热处理,获得光催化剂石墨烯-Bi20TiO32纳米复合材料。本发明具有优良的光催化性能及广泛的运用前景。
本发明公开了一种一步水热合成SnS2/MoS2复合材料的方法。本发明方法包括如下步骤:S1.?将锡源和硫源溶于水中,形成澄清溶液,溶液中硫与锡的摩尔比为6.0~10.0 : 1;S2.往S1溶液中加入钼源,产生沉淀,混匀得到混合物,使混合物中锡与钼的摩尔比为4~19 : 1;S3.将S2得到的混合物进行水热反应,冷却,漂洗沉淀,离心分离,干燥得到产品。本发明通过控制原料中硫与锡、锡与钼的摩尔比,使SnS2和MoS2之间产生协同效应,可快速大量合成SnS2/MoS2复合材料,且制备出的产品形貌较为均匀,无杂质。本发明方法具有工艺简单、成本低、产率高的优点,可应用于超级电容器电极材料,还有望在锂离子电池电极材料、光催化剂等领域获得广泛的应用。
本发明涉及3D打印成型材料领域,具体涉及一种用于3D打印ABS材料的增强增韧剂及由其制备的ABS复合材料,还涉及该增强增韧剂及该ABS复合材料的制备方法及应用。一种用于3D打印ABS材料的增强增韧剂,其原料配方由硅烷偶联剂改性的埃洛石纳米管和SBS增韧剂组成。同时,本发明还提供一种由该增强增韧剂制备的3D打印ABS增强增韧复合材料,ABS增强增韧复合材料具有强度高、韧性好、流动性好、固化速率快以及耐老化等性能,产品表面光泽度高,性能稳定制,不易老化变色。可广泛应用于3D打印的电子电器壳体、精密仪器仪表外壳、日用品、汽车内饰件、工艺品等。
本发明公开一种金属有机骨架材料/功能化离子液体复合材料及其制备与应用,属于轻工、化工材料的技术领域。本发明将功能化离子液体采用“瓶中造船法”合成并负载在金属有机骨架材料上,可以有效地提高离子液体的循环使用效率和减少离子液体的用量;由于金属有机骨架材料的多样性,可以合成一系列不同的金属有机骨架材料/功能化离子液体复合材料。本发明得到的金属有机骨架材料/功能化离子液体复合材料用于汽油催化氧化脱硫,达到提高体系催化性能、减少离子液体用量、便于产物分离和催化剂再利用的目的。本发明得到的复合材料作为催化剂用于吸附‑氧化‑萃取脱除汽油中含硫物质,其反应条件温和、脱硫效果好、催化剂容易回收。
本发明涉及复合材料的配方设计技术领域,特别是一种可降解型复合材料树脂,该复合材料树脂具有如下组分配方:高密度聚乙烯、淀粉醋酸酯、对二氧环己酮、纳米级碳酸钙和光降解剂。采用本发明的技术方案制备的复合材料树脂成本较低,力学性能较好,具有较高的拉伸强度、断裂伸长率和较好的降解效率,适宜进一步推广应用。
本发明属于电化学领域,其公开了一种硼掺杂石墨烯复合材料及其制备方法;该硼掺杂石墨烯复合材料的制备方法包括步骤:制备氧化石墨烯悬浮液;制备含氧化石墨烯的混合溶液;制备硼掺杂的氧化石墨烯溶液;制备硼掺杂石墨烯复合材料。本发明的硼掺杂石墨烯复合材料制备方法,该方法采用微波加热活化,可以制备出高比表面积石墨烯,比表面积达到1000~2200m2/g;另外,无需在高温下进行,可以降低能耗,且反应时间较短几分钟就能够完成整个活化反应,缩短了反应时间,提高了生产效率,降低了生产成本。
本发明公开了具有产生负离子、远红外线或抗菌防霉功能的乙烯-丁烯共聚物复合材料。由如下重量百分数的组分组成:乙烯-丁烯共聚物60-80%,聚乙烯10-20%,无机功能添加剂1-10%,相容剂1-10%,抗氧剂0.1-1%;本发明的复合材料能自产生负离子、远红外线和具有抗菌防霉功能,能用于制备空气净化器、手链、项链、水族用品、鞋垫。所得产品的负离子释放量达到1000个/秒/立方厘米以上;大肠杆菌抗细菌率>90%,大肠杆菌和金黄色葡萄球菌抗细菌率>90%;防霉等级0级;样品法向比辐射率>0.8。
本发明公开了一种增强聚丙烯复合材料及其制备方法。增强聚丙烯复合材料包括如下成分和重量份数:PP树脂100,增强改性剂10-50,高分子相容剂2-10,偶联剂0.1-0.5,抗氧剂0.1-0.5;其中,PP树脂为均聚PP,增强改性剂为空心玻璃微珠,高分子相容剂为马来酸酐接枝PP,偶联剂为硅烷偶联剂。本发明还公开了制造这种增强聚丙烯复合材料的制备方法--采用单螺杆挤出机挤出。本发明增强聚丙烯复合材料不仅韧性好、强度高、收缩小,而且表面光滑、比重低。
本发明公开了一种以硅酸钠为硅源的改性胶粉纳米复合材料及其制备方法。该制备方法包括如下步骤:在容器中依次加入水、胶粉、溶剂、前驱体、催化剂、有机硅氧烷于40-80℃水浴中,调节体系PH值至3.5~5.0,搅拌2-10小时;将产物过滤取出,室温陈化2-10小时,真空干燥至恒重。本发明的制备方法提高了胶粉与基体的相容性,使之可在不同的基体中应用,并且表现出较好的综合性能。简化了工艺,缩短了反应时间。本发明的改性胶粉纳米复合材料具有较好的物理机械性能、热性能,实现纳米二氧化硅与胶粉网络分子级互穿。
本发明公开一种L‑Sb2S3/Mxene复合材料及其制备方法和应用,所述L‑Sb2S3/Mxene复合材料是将锑盐和抗氧化剂溶解于有机溶剂中,搅拌均匀后取适量的Mxene溶液加入到上述悬浮液中继续搅拌一段时间,接下来向混合液加入硫化剂继续搅拌均匀,最后将已经配置好的混合液密封在体积为100ml的的聚四氟乙烯不锈钢高压釜中,并设置好加热参数进行高温水热反应。冷却至室温后,离心收集产物,用去离子水或乙醇洗涤数次,然后在60℃真空烘箱中干燥过夜,即可得到L‑Sb2S3/Mxene复合材料。由于MXene二维材料具有优异的导电性,有利于电子离子的传输,故而L‑Sb2S3/Mxene复合材料表现出优异的电化学性能。
一种新能源汽车电池包上盖用复合材料及成型装置,它涉及一种复合材料及成型装置,具体涉及一种新能源汽车电池包上盖用复合材料及成型装置。本发明为了解决现有新能源汽车电池包上盖所使用的复合材料阻燃能力较差,且所使用的成型模具废品率较高的问题。本发明所述材料以聚丙烯为基体树脂,添加阻燃剂、增韧剂组成,本发明所述成型装置包括上模和下模,下模的上表面设有凹槽,上模上表面的中部设有注塑孔,上模插装在凹槽内,上模的下表面与凹槽的内底面组成型腔,注塑孔与型腔连通。本发明属于新能源汽车电池领域。
本发明提供了一种无卤阻燃热塑性聚氨酯弹性体复合材料及其制备方法,属于热塑性聚氨酯弹性体复合材料技术领域,由以下重量分数的组分组成:热塑性聚氨酯弹性体60%‑90%、复合型无卤阻燃剂10%‑35%、熔体熔融粘度调节剂1‑20%、阻燃协效剂0.2%‑5%、热稳定剂0.2%‑2%、抗水解剂0.1%‑2.0%。本发明增加熔融粘度的同时,提高了含聚磷酸铵类阻燃复合材料的耐水性,加强了阻燃剂体系与聚氨酯弹性体的相容性;减少了对聚氨酯弹性体高分子材料的熔融剪切,减少降解,减少了燃烧滴落;降低材料燃烧热释放的热释放总量,还能降低燃烧行程的烟密度,显著提高阻燃效率;通过此方法合成的无卤阻燃热塑性聚氨酯弹性体复合材料具有燃烧抗滴落性强,阻燃效率高,机械强度高,耐水解性能优异等特点。
本发明涉及了一种TiO2光催化复合材料,其表面包括TiO2纳米片和负载在TiO2纳米片上的g‑C3N4量子点。所述TiO2光催化复合材料的制备方法为:S1.将TiO2纳米片和尿素溶于水,搅拌后形成悬浊液;S2.将所述悬浊液加热蒸发,得到白色固体;S3.将所述白色固体煅烧。本发明还涉及用上述光催化复合材料降解罗丹明b的应用。该TiO2光催化复合材料具有电子空穴分离率高和光催化效率高等优点,应用于紫外光下降解罗丹明b,其降解罗丹明b的效率是常规TiO2材料的4‑10倍。
中冶有色为您提供最新的广东有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!