本发明公开了一种长效防腐涂料的制备方法,所述制备方法如下:A组分制备:双酚A环氧树脂、聚环氧氯丙烷环氧树脂、活性稀释剂放入搅拌机内以42‑62℃匀速搅拌,加入分散剂、消泡剂、抗氧剂、稳定剂并搅拌均匀,进行高速分散,进行冷却,冷却至室温用研磨机研磨2遍,用刮板细度计检测达到20‑50um,检验合格后进行包装,B组分制备:环氧丙基烷基醚胺、低分子聚酰胺、三苯酚、苯甲醇,投入器皿中,升温至28‑45℃混合均匀,冷却降至室温,检验合格后包装,本发明交联固化后的漆膜,形成了互穿网络的交联状态,使本品成为不溶的物质,表现出很强的长效附着性,长效耐化学品性、长效耐腐蚀性和长效的抗冲击性,无毒无害具有阻燃性。
本发明公开了基于物联网的公共卫生间智能通风系统,包括监测装置,监测装置的上方位置处设有控制装置,且监测装置的一侧外表面设有风量调节阀,风量调节阀的一侧外表面设有风阀电机,且风量调节阀的上端外表面设有通风管道,监测装置的内部设有感温火灾探测器,且靠近监测装置内部感温火灾探测器的一侧位置处设有电化学模组。本发明所述的基于物联网的公共卫生间智能通风系统,设有WiFi模块、控制模块、风机变频器与氨气感应器,基于物联网技术可进行远程控制调节通风系统,能够根据具体的使用需要调节转速,能够检测收集环境中气体的参数,并且向后台反馈数据,后台根据反馈数据直接生成清洁计划,带来更好的使用前景。
本实用新型公开了一种适用于考古工作的智能头盔,包括帽壳、主控模块、以及与主控模块通过线缆电连接的照明模块、卫星定位模块、通讯模块、视频采集模块、语音模块和传感器模块,其中,所述主控模块通过通讯模块与主服务器通信连接,所述照明模块包括灯具和继电器,所述语音模块包括声卡、拾音器和扬声器,所述传感器模块集成有半导体型或电化学型传感器,用于检测当前环境气体浓度、以及温湿度,所述主控模块还包括与外界智能设备无线连接的拓展接口。本方案将考古工作所需的监视、检测、安全保障、定位、通讯、照明等功能模块整合、集成至头盔产品中,极大提高考古工作的便捷性、安全性。
本实用新型公开了一种悬式复合绝缘子专用球窝,包括中空的窝头,所述窝头底部外壁的中间位置通过紧固螺栓连接有中空的柱体,所述窝头底部内壁的中间位置通过紧固螺栓连接有锁紧销,所述窝头顶部外壁的中间位置开设有穿孔,所述窝头顶部内壁的一侧开设有安装槽,且安装槽的顶部内壁通过紧固螺栓连接有压力传感器。本实用新型设置有压力传感器,当球头脱落,压力传感器检测不到压力值时,无线收发器将脱落信息发送至计算机端,发生火灾时,温度传感器检测到过高的温度,无线收发器将脱落信息发送至计算机端,实现及时发现球头脱落和火灾,并及时预警,太阳能板接收太阳能转化为化学能储存在蓄电池内,为装置提供电能,实现绿色环保。
本实用新型提供了一种晶圆表面金属离子收集装置,所述装置包括晶圆固定单元和扫描单元,所述晶圆固定单元用于固定晶圆,所述扫描单元用于对所述晶圆的下表面接触扫描,所述扫描单元位于所述晶圆固定单元下方。通过将金属收集溶液扫描单元设置在晶圆的下方,避免了金属收集溶液在晶圆表面呈摊开状或在扫描过程中扫描管拖不住金属收集溶液的情况,提高了检测亲水性晶圆表面金属收集的成功率;所述晶圆表面朝下,避免了FFU吹下污染物到晶圆表面上,避免了检测结果不准确;所述扫描单元还连接有在线配置金属收集溶液,可以减少人为配置中的金属收集溶液的污染,无需人员接触化学品,提高了安全性。
本发明公开了一种功能化表面增强拉曼散射衬底及其制备方法。衬底为表面增强拉曼散射金衬底的表面修饰有对巯基苯硼酸;方法采用浸渍法,其步骤为先配制对巯基苯硼酸乙醇溶液,再将表面增强拉曼散射金衬底置于对巯基苯硼酸乙醇溶液中浸泡,之后,取出浸泡过的表面增强拉曼散射金衬底后,对其进行洗涤和干燥的处理,制得目的产物。它对汞离子有着较高的检测稳定性和灵敏度,极易于广泛地商业化应用于对汞离子的实时检测,在环境、化学、生物等领域有着广泛的应用前景。
本发明公开了一种基于染料化工废水混凝污泥的含铁炭基复合材料制备方法及应用。所述制备方法是将染料化工废水混凝污泥采用铁盐混凝方法进行预处理,烘干、研磨后,得到干化污泥,其中,所述染料化工废水混凝污泥具有有机污染物;炭化所述干化污泥,其中,采用氮气为保护气氛,升温至400℃以上,并保温120min及以上;然后即时冷却到室温,制得含铁炭基复合材料。本发明通过热解法将染料化工废水处理过程中产生的铁盐混凝污泥制备成含铁炭基复合材料,用于检测无机汞及吸附六价铬,热解得到的材料电化学检测性能及吸附性能均明显提升。
本发明公开了一种超细纳米颗粒物质谱仪进样接口装置,采用快速生长管对气溶胶超细纳米颗粒物进行粒径生长放大,结合空气动力学透镜实现超细纳米颗粒物的大气压进样、高效率传输与聚焦,并通过与质谱仪联用,可实现超细纳米颗粒物的化学成分在线检测。该装置主要包括三段式生长管和空气动力学透镜两部分。利用温控加热和制冷装置控制三段生长管的温度,产生一定的温差,利用水蒸气扩散速率高于空气传热速率的特性使超细纳米颗粒物周围的水蒸气过饱和,最终凝结在超细纳米颗粒物表面,促进颗粒物粒径增大。长大后的颗粒物通过空气动力学透镜传输进入质谱仪被气化、电离,最终被检测。
本发明公开了一种特异性结合哌替啶的核酸适配体,所述核酸适配体序列包含以下四种核苷酸序列中的至少一种:A、如SEQ IDNo.1所示的DNA序列;B、与SEQ ID No.1所示DNA序列具有60%以上同源性的DNA序列;C、在严格条件下与SEQ ID No.1所示DNA序列杂交的DNA序列;D、由SEQ ID No.1所示DNA序列转录的RNA序列;其中,上述四种核苷酸序列均能够特异性结合哌替啶。本发明还公开了一种核酸适配体衍生物。本发明还公开了上述核酸适配体或核酸适配体衍生物在制备检测哌替啶的试剂盒或检测哌替啶的分子探针中的应用。本发明能与哌替啶特异性结合,且化学性质稳定,易于保存和标记。
本发明涉及一种铋酸银‑银‑二氧化钛纳米管阵列的制备方法,具体步骤如下:采用阳极氧化法制得二氧化钛纳米管阵列、煅烧晶化获得锐钛矿二氧化钛纳米管阵列,然后置于含有硝酸铋和硝酸银的混合溶液中浸渍;最后置于氢氧化钾溶液中进行共沉淀反应即得产物。采用共沉淀法制备铋酸银‑银‑二氧化钛复合纳米管阵列,相比较于单纯的二氧化钛纳米管阵列,铋酸银‑银‑二氧化钛纳米管阵列的表面电化学反应得以调控,在降低其分解水的同时提高了其对有机物污染物的分解能力,实现了其为对含有有机污染物水体的选择性氧化,得到了具有高光电化学检测性能的二氧化钛复合阵列材料。
本发明公开了一种制动鼓的铸造方法,包括以下步骤:按组成原料重量配比生铁30%、废钢30%、回炉铁20%、废铁20称取原料,合计100%,控制其化学成分C:2.5%,Si:1.6%,Mn:1.2%,Cr:0.35%,Cu:1.0%,P:0.4%,S:0.15%,将上述的原材料加热至1300℃,熔化成金属液,检测化学成分的含量,然后在上述金属液中加入相应缺乏的元素金属,混合均匀,形成浇注液;通过浇口向砂型中浇注浇注液,冷却凝固,取出制动鼓。本发明组成原料配方合理,工艺简单,制成的制动鼓性能好,使用寿命长,合格率高。
本发明公开了Zr4+诱导的金属有机凝胶荧光开关传感材料及其制备方法和应用,所述方法包括以下步骤:A1:将DMF和H2O移入反应容器中,然后充分摇动直至完全混合,DMF:H2O的体积比为7:3;A2:将BTC加入上述反应容器中,将反应容器超声处理20秒,直到系统中的配体BTC完全溶解,然后将ZrCl4加入到混合溶剂中;ZrCl4:BTC的摩尔比为1:4;A3:将反应体系放入超声仪中,80℃超声30分钟,形成白色柱状凝胶。本发明构建的新型荧光开关传感平台,能够通过电荷转移作用选择性地检测ARG以及通过能量共振转移和化学吸附作用快速检测和去除水中的CrO42‑。
本发明公开了一种猪诱导性多能干细胞诱导方法,利用外源限定因子与增强型绿色荧光蛋白(Enhanced?green?fluorescent?protein,EGFP)报告基因构建融合蛋白慢病毒表达载体用于猪诱导性多能干细胞的诱导,对表达外源限定因子融合蛋白的猪胎儿成纤维细胞进行培养传代,逐步分离培养出集落边缘界限清晰的细胞克隆,细胞集落生长状态稳定,核型正常,碱性磷酸酶检测为阳性,免疫细胞化学检测显示Oct4、Nanog、SSEA-1蛋白表达为阳性,体内能够分化形成含有三个胚层的畸胎瘤,分离培养的细胞克隆得到猪诱导性多能干细胞。
本发明公开了一种含荧光染料的水性聚氨酯的制备方法。将含有活泼氢的荧光染料与异氰酸酯反应而将染料母体接入聚氨酯分子链上,再通过扩链、交联、侧挂活性基团、引亲水剂的方法,在聚氨酯链上引入交联点、活性基团和亲水基团,并使分子量足够大后,中和,乳化以制得水性聚氨酯荧光染料。本发明制得的荧光聚氨酯在水相和胶膜中依然具有较强的双光子效应和光致发光效应,因此该发明可以在防伪标识,交通标志,生物显影,生物检测,药物示踪,化学检测,荧光油墨,荧光涂料等方面得到应用。
本发明涉及保温杯的技术领域,且公开了一种具有高效清理锈质功能的保温杯护理装置,包括外壳,所述外壳的外部固定连接有按钮,外壳的表面开设有出口,外壳的内部活动连接有转杆,转杆的外部活动连接有连杆一;通过出口、转杆、连杆一、连杆二、连杆三、滑轨、滑块、感应板、安装壳、磁环、电磁铁、转接板、移动板、弹性片、除锈刷、检测组件一、检测组件二之间的相互作用下,可以使得保温杯使用过程产生的污垢十分方便的去除,也有效的避免了人工手动清理和使用化学方式清理对保温杯内壁的损坏,进而提高了保温杯的使用寿命,也能避免保温杯内壁污垢对用户身体健康带来的影响,提高了保温杯使用的安全性和卫生。
本发明公开了一种纺织品脱色工艺,包括反应池、清水池、药剂池、第一废液处理池和第二废液处理池,反应池的一侧通过导管分别与清水池和药剂池相通,反应池的另一侧通过导管分别与第一废液处理池和第二废液处理池相通,反应池的底部设有曝气系统,并依次进行预浸、脱色、去残留、烘干和检测。本发明利用预浸过程将纺织品浸湿,方便后期进行脱色处理,提高脱色效率,同时经过反应池后将污水分别排入到第一废液处理池和第二废液处理池中,通过化学沉降将废水中的悬浮物和废物排出,并将处理后的清水通过循环泵循环至清水池中,实现废水的循环利用,在脱色处理后对纺织品进行去残留处理,降低纺织品上的化学残留,提高处理效果。
本发明公开了一种柴油机缸体的铸造方法,首先按组成原料重量配比生铁25-32%、废钢25-32%、回炉料15-25%、稀土铁合金5-8%、硅铁1.7-2.0%、增碳剂0.2-0.24%和锰铁合金5-10%称取原料,上组分合计100%,控制其化学成分C:2.83-3.2%,Si:1.0-1.3%,Mn:0.6-1.0%,P:0.8-1.0%,S:0.03-0.09%,Si?8-15.5%,Cr?0.27-0.33%,Sn?0.01-0.02%,Cu?0.8-1.2%;加热至1400-1600℃,熔化成金属液,检测化学成分的含量,然后在上述金属液中加入相应缺乏的元素金属,混合均匀,形成浇注液;最后浇注,冷却凝固,取出后蒸汽处理即得柴油机缸体,本发明组成原料配方合理,工艺简单,制成的柴油机缸体性能好,使用寿命长,合格率高,大大提高了产品的质量,适合广泛推广。
本发明公开了一种牛诱导性多能干细胞诱导方法,利用外源限定因子与增强型绿色荧光蛋白(Enhanced?green?fluorescent?protein,EGFP)报告基因构建融合蛋白慢病毒表达载体用于牛诱导性多能干细胞的诱导,对表达外源限定因子融合蛋白的牛胎儿成纤维细胞进行培养传代,逐步分离培养出集落边缘界限清晰的细胞克隆,细胞集落生长状态稳定,核型正常,碱性磷酸酶检测为阳性,免疫细胞化学检测显示Oct4、Nanog、SSEA-1蛋白表达为阳性,体内能够分化形成含有三个胚层的畸胎瘤,结果证实分离培养的细胞克隆具有胚胎干细胞样特征,得到牛诱导性多能干细胞。
本发明公开了一种转基因小麦分子育种方法,涉及小麦育种技术领域。包括如下步骤:SS01、选种;SS02、土壤改良:在育种装置育种穴内由下至上依次铺设泥沙层、基土层、营养土层和种植土层;SS03、杂交种植:SS04、物理诱变;SS05、一次自交种植;SS06、化学诱变;SS07、二次自交种植;SS08、多轮自交种植;SS09、转基因品种收获;SS10、转基因植株的分子检测;SS11、转基因繁殖。本发明通过选用合适的杂交父本、母本和合适的杂交方法以及对种子进行物理化学诱变处理,实现了快速高效育种,提高了获得小麦新品种的机率。
本发明属于工业锅炉管无损检测技术领域,具体涉及一种用于锅炉管内壁的周向水刀氧化皮清理器。该清理器包括依次连接的周向水刀刀头、复合导管和储水箱,复合导管与储水箱通过紧固螺丝连接,储水箱内还设有用于将水加压的液压装置。本发明产品采用水刀高压冲洗,代替原有的受热面管外壁敲打震动脱落的方法,清洗效率明显提高;采用周向刀头,可将内壁360°清理,清洁面增大,清洁率明显提高;主要采用水作为受热面管内壁的冲刷介质,不会造成受热面管内壁的污染;可以在水介质中添加其他化学药品,帮助锅炉进行其他化学清洗。
本发明公开了一种汽油机缸体的铸造方法,按组成原料重量配比生铁20-25%、合金钢5-8%、回炉料25-30%、稀土铁合金8-15%、铝合金2.0-2.5%、硅铁3.0-4.0%、锰铁合金5-10%称取原料,以上组分合计100%,控制其化学成分,将上述的原材料加热至1400-1550℃,熔化成金属液,检测化学成分的含量,然后在上述金属液中加入相应缺乏的元素金属,混合均匀,形成浇注液,通过浇口向砂型中浇注浇注液,冷却凝固取出汽油机缸体。本发明组成原料配方合理,工艺简单,制成的汽油机缸体性能好,使用寿命长,合格率高。
本发明公开了一种适用于物理气相沉积工艺的石英锅等离子熔射方法,涉及石英锅等离子熔射技术领域,包括以下步骤:S1、遮蔽操作;S2、喷砂处理;S3、第一次检测操作;S4、第一次清洗操作;S5、第一次烘烤操作;S6、熔射操作;S7、第二次检测操作;S8、第二次清洗操作;S9、超声操作;S10、第二次烘烤操作。本发明石英锅用于制造集成电路的物理气相沉积中的pre‑c l ean XT工艺腔体中,物理气相沉积技术其原理是在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质电离,在电场的作用下,使被蒸发物质或其反应产物沉积在工件上,其制备的薄膜具有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。
本发明涉及高硅铝复合材料的镀金方法。该方法的前处理按常规铝合金电镀二次浸锌处理方法分为清洗除油、碱蚀、出光、一次浸锌、退锌和二次浸锌六个步骤;之后的操作步骤如下:1.在化学镀镍液中预镀化学镍;2.按常规镀镍方法第一次镀镍,镍层厚度2~3微米;3.时效处理;4.活化处理;5.按常规镀镍方法第二次镀镍,镍层厚度2~3微米;6.以纯金板或铂金钛网作为阳极,高硅铝复合材料为阴极,按常规镀纯金的方法,金层厚度2~3微米;7.镀层结合力检测。10倍放大镜下观察镀层无起皮鼓泡现象,镀层结合力很好;采用本发明方法镀金的镀层与高硅铝基材结合力牢固达到GJB1420《半导体集成电路外壳总规范》附录A规定的标准。
本发明提供由SEQ ID NO:1所示的特异性结合卵巢浆液性腺癌细胞的单链DNA核酸适配体及其应用。具体地,本发明的核酸适配体及其衍生物相对抗体而言,具有能够化学合成、分子量小、稳定、易于保存和标记等优点。本发明还提供所述单链DNA核酸适配体的应用,它们可以单独地或组合地用于卵巢浆液性腺癌细胞的检测或者卵巢浆液性腺癌病人卵巢组织切片的检测,或者靶向到卵巢浆液性腺癌病人的肿瘤部位。
一种四氧化三铁八面体纳米晶的制备方法及应用,涉及溶剂热反应和界面反应技术领域,向乙二醇中加入一定量的铁盐,搅拌混合后再加入一定量的碳酸盐,继续搅拌后得到胶状前驱体;转入反应釜中通过溶剂热反应,最后经过滤分离、洗涤干燥从而获得四氧化三铁八面体纳米晶。本发明仅以铁盐、乙二醇和碳酸盐为主要原料,采用溶剂热法成功制备出了高稳定性高化学活性的Fe3O4八面体纳米晶。同时,本发明提供了对Mn(VII)的痕量检测及大容量去除,并得到MnFe2O4产物,且去除Mn(VII)具有不可逆性。可望用于饮用水中Mn(VII)痕量检测和工业废水中Mn(VII)大容量去除等领域。
本发明公开了通过检测唾液中SARS‑CoV‑2特异性IgA从而诊断SARS‑CoV‑2感染的方法,诊断的方法可以是利用任何能够检测IgA的方法,如ELISA、免疫共沉淀、化学发光法及胶体金法。本发明证明COVID‑19患者的唾液中存在SARS‑CoV‑2特异性IgA,可用于临床诊断SARS‑CoV‑2感染。
本发明公开了一种合金球磨机筒体制备方法,具有如下工艺步骤:将按6:1:1.2:0.2的模具钢、低碳锰铁、生铁、回炉料、以及相当于上述炉料总质量3‑3.5%熔炼造渣剂加入到中频感应炉中混合加热熔化,并按要求调整化学成分的含量,检测钢水中其中元素化学成分的重量百分比:1.85‑1.25%的铬,0.95‑1.15%的镍,0.2‑0.4%的钨,0.55‑0.65%的钴,0.1‑0.15%的矾,0.09‑0.12%的钛,0.01‑0.03%的锡;本发明热锻好的球磨机筒体,整体强度好,使用寿命长,安全可靠,适用于各种型号球磨机筒体大批量生产。
本发明公开了一种耐蚀球墨铸铁及其制备方法,所述球墨铸铁含有以下化学元素:Si,C,Mn,Mo,P,S,Cr和铁,制备方法包含三步,其中包括条件的控制,成分的检测与调整。本发明相比现有技术具有以下优点:使用发明中方法,球化处理在低氧环境中进行,使球墨铸铁表面形成牢固的保护层,使铸铁基体得到稳定的相体,从而提高其耐腐蚀性,孕育处理时控制在较高温度,有效避免部分碳化物的聚集,保证了球墨铸铁的机械性,在制备过程中检测相应数据并及时做出调整,保证了生产的严谨与精确。
本发明公开了一种用于ADI铸造汽车底盘的工艺,首先按组成原料重量配比生铁(回炉铁)40%、废钢60%、称取原料,合计100%,控制其化学成分C:3.7-3.9%,Si:2.6-2.85%,Mn:0.04-0.045%,Mg:0.046%,Re:0.046%,P:%,S:0.02%。MO:0.3%,Ni:2%,Cu:0.75;将上述的原材料加热至1450-1530℃,熔化成金属液,检测化学成分的含量,然后在上述金属液中加入相应缺乏的元素金属,混合均匀,形成浇注液。本发明组成原料配方合理,制成的新铸造材料ADI性能好,同时还具备良好的力学性能,如强度高,冲击韧性、塑性和耐磨性等良好。
本发明公开了一种轮毂的铸造方法,包括以下步骤:按组成原料重量配比生铁45-55%、钢25-35%、废铁屑15-25称取原料,合计100%,控制其化学成分C:2.0-3.5%,Cu?0.95-1.25%,Si:1.8-2.5%,Mn:1.2-2.4%,S:0.25-0.35%,Cr?0.15-0.25%;将上述的原材料加热至1500-1800℃,熔化成金属液,检测化学成分的含量,然后在上述金属液中加入相应缺乏的元素金属,混合均匀,形成浇注液,通过浇口向砂型中浇注浇注液,冷却凝固,取出轮毂。本发明组成原料配方合理,工艺简单,产品使用寿命长,合格率高,大大提高了产品的质量。
中冶有色为您提供最新的安徽合肥有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!