本发明公开了一种可充电热失控保护的电动自行车锂电池模块,包括有锂离子电芯组(4),所述锂离子电芯组(4)由多个串联在一起的锂离子电芯组成;所述锂离子电芯组(4)的两端分别连接有一个充放电正极端子(1)和一个充放电负极端子(2);所述锂离子电芯组(4)与至少一个串联支路相并联,每个所述串联支路由至少一个常开型温度开关(3)和至少一个功率电阻(5)组成。本发明公开的一种可充电热失控保护的电动自行车锂电池模块,其可以有效提升电动自行车锂离子电池在使用过程中的安全性和可靠性,延长锂离子电池的使用寿命,同时可以降低电动自行车锂离子电池的生产成本,从而具有广泛的市场应用前景,具有重大的生产实践意义。
本发明公开了一种原位合成含硅、镁、锂的有机层状复合材料的方法,是以水溶性锂盐或氢氧化锂以及氢氧化镁胶体、硅胶、有机表面活性剂、溶剂水为原料,经原位水热合成制得含硅、镁、锂的有机层状复合材料;所述的氢氧化镁胶体是以水溶性镁盐为原料,以碱为沉淀剂,通过溶液沉淀法制得;所述的硅胶是由水玻璃经酸处理得到;所述的有机表面活性剂为阳离子有机表面活性剂、中性有机表面活性剂中的一种或两种的混合。本发明所述合成方法由于采用了一步合成,操作简单快速,并且拓宽了适用范围。所制得的含硅、镁、锂的有机层状复合材料,结晶良好且有较大的层间距,片状结构完好且堆积紧密,可用于传统有机层状材料应用的领域。
一种电动平衡车锂电池防爆系统包括主控板、锂电池、充电模块、充电接口、电子开关及温度探头,电子开关的输入端、输出端及控制端分别与充电接口、充电模块及主控板连接,温度探头安装在锂电池里,温度探头与主控板连接,温度探头用于采集锂电池的温度信息并将采集到的锂电池温度信息发送至主控板,主控板根据温度探头采集到的锂电池温度信息判断锂电池的温度是否高于设定值,并在判断出锂电池的温度高于设定值时,主控板控制电子开关断开。本发明的电动平衡车锂电池防爆系统在锂电池充电时,可以在锂电池温度过高时自动停止对锂电池充电,可以有效解决锂电池在温度过高时时容易发生爆炸的问题。
本发明提供一种锂电池充放电控制的智能电源管理系统,搭建在ARM核心板上,是一种运行linux环境的SOC系统,该管理系统可用于对多个单体锂电池进行布次智能充放电控制,统一高效管理多个锂电池,提高充放电管理效率;另还可根据单体锂电池的电压电流实时计算功率,以动态关闭已达到充放电要求的单体锂电池的电源,达到节能的效果;设置安全监测设备确保系统在安全的环境下使用,延长锂电池的寿命;通过推送上位机软件的策略,进一步达到数据管控以及节能的效果。
本发明涉及锂离子电池领域,为了克服现有碳包覆镍钴锰酸锂中碳源分散性、包覆性较差,尺寸不可控,对镍钴锰酸锂性能提升和改善效果有限的不足,公开一种碳包覆镍钴锰酸锂三元材料的制备方法。通过非均相反应,在镍钴锰酸锂表面实现聚苯胺的原位生长包覆,再通过控制氧化剂的加入比例,控制聚苯胺包覆层的厚度,从而达到对碳包覆镍钴锰酸锂三元材料的碳包覆层厚度的控制,产物的碳源分散性、包覆性良好,碳包覆镍钴锰酸锂尺寸可控,对镍钴锰酸锂性能提升改善效果明显,从而得到理想的碳包覆镍钴锰酸锂三元材料。
本发明涉及一种全固态锂离子电容器及其制备方法,包括步骤:正极制备;补锂负极制备;全固态电解质制备;封装:在手套箱中,将制备得到的正极片、补锂负极片以及全固态电解质封装得到全固态锂离子电容器。本发明的有益效果是:本发明提出一种全固态锂离子电容器,设有正极、全固态电解质、补锂负极和外壳,所述正极上的活性物质为双电层型储能材料;全固态电解质为有机聚合物电解质;补锂负极上的活性物质为补锂后的嵌锂型储能材料;本发明可以有效避免锂枝晶和热失控的发生,消除了电解液泄漏造成的安全隐患,同时提升体系能量密度及循环使用寿命,为开发高能量密度、高安全锂离子电容器提供了一种非常好的思路。
本发明公开了一种提升锂硫电池稳定性隔膜及其制备方法和应用。该制备方法如下:一、将氧化硅纳米球与水溶性酚醛树脂混合后涂覆成膜。膜层干燥成型后剥离,得到氧化硅纳米球/酚醛树脂薄膜。二、将氧化硅纳米球/酚醛树脂薄膜在碱溶液中浸泡后,用去离子水清洗至中性,得到多孔酚醛树脂薄膜。三、以甲基吡咯烷酮为溶剂,将纳米金颗粒、碳纳米管、聚偏氟乙烯混合并且搅拌均匀,得到胶状材料。四、将步骤三所得胶状材料涂覆于多孔酚醛树脂薄膜的其中一个面上,形成功能层,厚度控制为5μm至10μm。干燥后得到提升锂硫电池稳定性隔膜。该隔膜在光照下能有效抑制聚硫锂的“穿梭效应”,提升锂硫电池的循环稳定性,推动锂硫电池的发展。
本发明公开了一种工业车辆锂电池总成充电管理系统,包括处理器、电机控制器、温度检测装置及加热装置。处理器基于根据温度检测装置的检测数据在锂电池总成的温度不大于最小充电温度时使处于发电模式的电机控制器为加热装置供电,并通过调节电机控制器的输出电流,以避免加热装置损坏,当锂电池总成的温度上升至大于预设温度时,使处于发电模式的电机控制器为锂电池总成充电。可见,本申请中并不是使处于发电模式的电机控制器直接输出电流,使加热装置进行加热,而是对电机控制器的输出电路进行调整,以使输入至加热装置的电流小于预设电流,保证了加热装置的正常工作,也使电机控制器将机械能转换为电能为锂电池总成充电,提高了能量利用率。
本发明公开了一种硅基锂离子电池负极材料及其制备方法,该硅基锂离子电池负极材料包括衬底,以及沉积在衬底上的纳米棒状镍硅核壳阵列;该纳米棒状镍硅核壳阵列以镍正锥形阵列为核,以硅为壳。制备方法包括:通过电沉积法,在预处理后的衬底表面生长镍正锥形阵列;再采用气相沉积法,在镍正锥形阵列外沉积纳米硅,得到硅基锂离子电池负极材料。本发明公开的硅基锂离子电池负极材料为上下均匀的纳米棒状阵列结构,具有优异的初始比容量和循环稳定性,有望在锂离子电池领域获得更广泛的应用。
本发明公开了一种表面包覆纳米金属颗粒的磷酸亚铁锂电极材料的静电纺丝制备方法,包括:(1)将可溶性高分子和电解质添加到溶剂N,N‑二甲基甲酰胺中,恒温加热搅拌至溶解;将锂源、铁源、磷源和纳米金属颗粒混合,添加到可溶性高分子纺丝溶液中,室温下超声,得到磷酸亚铁锂前驱体‑纳米金属颗粒混合均匀的纺丝溶液;(2)将上述纺丝溶液脱泡后静电纺丝得到纳米纤维膜;(3)将静电纺丝纳米纤维膜干燥、热压,在氮气气氛下二次煅烧,自然冷却,得到表面包覆纳米金属颗粒的磷酸亚铁锂电极材料。本发明制备方的纳米金属颗粒和碳同时包覆在磷酸亚铁锂颗粒表面,极大的提高了其电导率,从而有效的改善了其电化学性能,同时易于实现工业化大规模生产。
本发明涉及电池领域,尤其涉及石墨烯锂与铝镁合金电池太阳能一体化制备装置及工艺,装置包括石墨烯岛、石墨烯锂电池岛、石墨烯硅合金贴膜太阳能发电岛、铝镁合金空气电池岛、远程防爆监控岛;石墨烯岛与石墨烯锂电池岛、石墨烯硅合金贴膜太阳能发电岛连接,石墨烯硅合金贴膜太阳能发电岛与石墨烯锂电池岛连接,铝镁合金空气电池岛与石墨烯锂电池岛连接,远程防爆监控岛用于实时在线监控确保安全。本发明的有益效果在于:一是低成本生产石墨烯锂电池;二是利用铝镁合金空气电池和石墨烯硅合金贴膜太阳能发电为石墨烯锂电池充电,增加续航里程,方便适合远行;三是一体化总重量不到锂离子电池重量的一半,提高电能有效利用率。
本发明公开了一种基于充电数据空间分布特征的锂电池在线寿命预测方法。本发明包括以下步骤:采集全新锂电池在预设充放电循环区间中的充电电压与电流数据以及循环寿命;计算对应的空间分布特征;重复步骤对各个锂电池均进行采集并计算,获得各个锂电池的循环寿命以及对应的空间分布特征,并构成训练集;对锂电池寿命预测回归模型进行训练,获得训练后的锂电池寿命预测回归模型;在线预测时,采集待预测锂电池在预设充放电循环区间中的充电电压与电流数据,计算获得对应的空间分布特征并输入到回归模型中进行预测,输出当前待预测锂电池的循环寿命。本发明实现了锂电池寿命的精准预测,提升了锂电池的可靠性、安全性。
本发明公开了一种碳包覆磷化锂电极及其制备方法;该电极包括炭基体;炭基体上设有微米级孔道;微米级孔道中填充有磷化锂;炭基体通过木片碳化得到;微米级孔道为木片中自带的孔道。本发明仅在最后一个步骤通过煅烧将吸附到木片中的磷酸锂转化为磷化锂,同时将葡萄糖和木片转化为碳,从而直接得到磷化锂电极,而此前的多个步骤中均无磷化锂材料参与,故磷化锂制备过程中需要干燥环境的步骤得到了大大缩减,这显著简化了工艺,节省了为磷化锂提供干燥环境带来的成本。此外,磷化锂被葡萄糖以及木片碳化后得到的碳所包覆,能有效提升磷化锂电极的电子导电性。
本发明公开了一种基于模糊模型预测控制的锂电池温度控制系统和方法。温度采样模块安装于锂电池表面,电流采样模块连接锂电池输出,电流采样模块经SOC估计模块连接到温度控制模块,温度控制模块连接到散热模块;温度采样模块采集锂电池的电池表面温度,电流采样模块采集锂电池的输出电流,SOC估计模块接收来自电流采样模块采集到的锂电池输出电流处理估计获得电池的SOC值,将电池表面温度、SOC值、输出电流发送到温度控制模块,温度控制模块根据锂电池放电时的温升特性,控制散热模块进行散热。本发明既能降低锂电池温升速率,又能减少锂电池用于散热的能量消耗,延长了锂电池的使用寿命和续航能力。
本发明涉及锂离子电池材料技术领域,具体涉及一种软包装锂离子电池高温电解液。所述电解液由主料和功能添加剂组成,主料由A锂盐和B有机溶剂组成,A锂盐为主料总量的12-15wt%,B有机溶剂为主料总量的85-88wt%,功能添加剂为主料总量的6-10wt%。这种软包装锂离子电池高温电解液的高温循环寿命较好。
本发明公开了一种基于氯化铁铵的锂离子电池负极材料,按质量比计,原料组成为:氯化铁铵1;碳材料0~10;碳材料为石墨、乙炔黑、Super P、炭黑、中间相碳微球、石墨烯、纳米碳管中的一种或任意多种的混合。该锂离子电池负极材料的首次放电容量可达1750mAh/g,首次可逆容量可达1000mAh/g,材料的比容量高。本发明还公开了所述的种基于氯化铁铵的锂离子电池负极材料的制备方法,操作简单、成本低。本发明还公开了所述的种基于氯化铁铵的锂离子电池负极材料的应用,用于制作锂离子电池的负极。比目前商业用碳负极材料制备的电池具有更高的比容量。
本实用新型涉及电池领域,尤其涉及石墨烯锂与铝镁合金电池太阳能一体化制备装置,装置包括石墨烯岛、石墨烯锂电池岛、石墨烯硅合金贴膜太阳能发电岛、铝镁合金空气电池岛、远程防爆监控岛;石墨烯岛与石墨烯锂电池岛、石墨烯硅合金贴膜太阳能发电岛连接,石墨烯硅合金贴膜太阳能发电岛与石墨烯锂电池岛连接,铝镁合金空气电池岛与石墨烯锂电池岛连接,远程防爆监控岛用于实时在线监控确保安全。本实用新型的有益效果在于:一是低成本生产石墨烯锂电池;二是利用铝镁合金空气电池和石墨烯硅合金贴膜太阳能发电为石墨烯锂电池充电,增加续航里程,方便适合远行;三是一体化总重量不到锂离子电池重量的一半,提高电能有效利用率。
本发明公开了一种基于滑动窗滤波的单体锂离子电池SOC估计方法。新算法中的电池模型由2个RC并联电路、1个串联电阻和1个非线性电压源组成,电池内部动态工作状态由电池端电压、RC并联电路和电池SOC进行模拟。本发明基于电化学-电路等效的锂离子电池组合模型,该模型较好的描述了电池OCV和SOC的非线性函数关系,并利用SMO算法解决模型的非线性问题。同时,本发明创新性的提出将SMO算法与Kalman滤波算法相结合,解决锂离子电池模型不确定性问题,保证电池模型的精确性和电池控制系统的可靠性。最后,本发明提出电池模型参数在线辨识方法,为锂离子电池SOC在线精确估计提供必要的参数值。
本发明公开了一种锂电池盖板定位压装夹具及其控制系统,涉及电池压装领域,本发明的锂电池盖板定位压装夹具包括控制单元、载装台、按压机构、驱动机构和定位机构,所述控制单元与所述按压机构、驱动机构和定位机构电连接,所述载装台用于放置锂电池,所述定位机构用于对锂电池在载物台上进行定位,所述驱动机构推动所述按压机构对锂电池盖板进行按压,将锂电池盖板压入壳中。还提供一种锂电池盖板定位压装夹具控制系统,通过该控制系统,可以减少人工作业强度,提高锂电池盖板压装夹具的自动化控制程度。
本发明公开了一种锰酸锂电池材料的制备方法,包括以下步骤:(1)将锰源与掺杂离子源溶解于水中,然后加入碱性介质形成离子掺杂的锰氧化物沉淀,然后向其中通入氧化气体,当溶液pH值达到6~7时,结束通气;分离得到离子掺杂锰氧化物;(2)将离子掺杂锰氧化物与氢氧化锂水溶液混合,在150~500℃的水热条件下反应,得到锰酸锂;(3)向所得反应液中注入用作包覆的碳源与水的混合物、氧化物与水的混合物或者氧化物的前驱体盐溶液,充分搅拌后收集反应液,干燥得到中间产物;(4)在保护气氛下,将中间产物在500~800℃温度下烧结得到最终产品。本发明制得的锰酸锂材料,颗粒大小均匀,高低温循环性能和大倍率放电性能均明显优于传统高温固相法合成的同类产品。
为了克服现有技术冷却效率低的问题,本发明提供一种电动叉车锂离子电池分区式冷却装置,能提高冷却水的利用效率,增大散热面积,提高锂离子电池的冷却效率。技术方案如下:包括锂电池板、导热隔层、侧面冷却水管、底部冷却水管,导热板、固定框、承重板,外保护箱,锂电池板垂直固定于导热隔层上部,导热板垂直固定于导热隔层上部并与锂电池板平行且贴合锂电池板,侧面冷却水管固定在导热板远离锂电池板的一侧面,底部冷却水管固定在承重板上部,底部冷却水管上部紧贴导热隔层下部,固定框固定在承重板上部,固定框包围导热隔层及导热隔层上下部所有组件,外保护箱包括上保护箱与下保护箱,上保护箱盖在承重板上部,承重板下部装入下保护箱。
一种能原位观察电极材料在充放电过程中状态变化的开放式模拟锂电池的电化学池及测试方法,所述的电化学池为一个置于无水无氧环境中的二电极体系电化学池,该二电极体系电化学池是以金属锂片为负极、薄膜电极为正极、锂电池电解液为电解液,所述的薄膜电极是在导电基体表面涂覆锂电池正极材料形成的均匀规整的薄膜,所述的锂电池正极材料为具有电致变色性能的有机小分子或有机聚合物,所述的薄膜厚度需能使薄膜呈现颜色。基于所述电化学池的电化学测试方法采用以下步骤:将电化学池通过信号线与电化学测试系统连接,进行模拟锂电池的电化学测试,通过电压的变化观察薄膜电极的薄膜颜色变化,从而实现原位观察薄膜电极材料在充放电过程中状态变化。
本发明涉及锂电池负极材料领域,尤其涉及一种钛酸锂复合负极材料的制备方法。所述制备方法包括:1)将乳糖粉末加入至钛酸四丁酯中静置吸附并加入所配制柠檬酸的醇溶液和醋酸锂的醇溶液,再加入醋酸锂的醇溶液,得到预溶液;2)对预溶液进行反应搅拌一段时间,反应搅拌结束后旋蒸去除多余的醇溶剂,至形成溶胶状后超声震荡使乳糖粉末均匀分散,得到悬浊溶胶;3)将悬浊溶胶涂覆于负极材料基体表面,真空干燥后再置于水中静置一段时间,再进行第二次的真空干燥,最后置于保护气氛下进行煅烧,即得到钛酸锂复合负极材料。本发明采用乳糖粉末作为模板时,其方便去除、利于回收再利用,并且所制得的钛酸锂微球具有高稳定性和高比表面积的优点。
本发明公开了一种MoS2-带孔纳米片/石墨烯电化学贮锂复合电极及其制备方法,其电化学贮锂活性物质为MoS2-带孔纳米片与石墨烯的复合纳米材料,MoS2带孔纳米片为单层或少层数,复合纳米材料中MoS2纳米锂和石墨烯的物质的量之比为1 : 1-1 : 3,复合电极的组分及其质量百分比含量为:MoS2带孔纳米片/石墨烯复合纳米材料为80-85%,乙炔黑5-10%,聚偏氟乙烯5-10%。制备步骤:先制备得到MoS2带孔纳米片/石墨烯复合纳本材料,与乙炔黑及聚偏氟乙烯调成糊状物,涂到铜箔上滚压得到。本发明的电化学贮锂复合电极具有高的电化学贮锂容量,优异的循环性能和增强的倍率特性,在高性能锂离子电池中应用前景广泛的。
本发明属于电极材料领域,具体涉及一种含锂金属氧化物表面氟化处理方法及其作为锂离子电极材料的应用。本发明通过氟代醇(醛)溶液与含锂金属氧化物材料表面的余锂杂质发生反应,生成一层含氟化合物均匀包覆在材料表面。由于这种含氟化合物包覆层是通过与含锂金属氧化物发生原位化学反应所构建,故能紧密包覆在材料表面,且具有优异的结合力,既不阻碍电子和离子的传输又能隔离水分、二氧化碳及电池电解液间的副反应发生,同时还能提高材料的存储稳定性和加工性。此外,这种固‑液反应包覆方法具有均匀高效、操作简便、成本低廉等优点,极具产业化潜力。该改性处理后的材料应用在锂离子电池中,能有效提高材料的稳定性和使用寿命。
本发明公开了一种硫导电氧化物复合材料及其作为锂硫电池正极材料的应用,所述硫导电氧化物复合材料的制备方法包括如下步骤:(1)取一定量二氧化钛,在还原性气氛中升温至800~1100℃烧结1~4小时,制备得到导电氧化物;(2)将升华硫溶解于溶剂中,按硫与导电氧化物的质量比为(2~1)∶1的比例加入导电氧化物,超声混合,去除溶剂后得到复合材料前驱体;(3)将复合材料前驱体充分球磨,得到硫导电氧化物复合材料。本发明制备工艺简单,利于实现工业化,无污染物排放,对环境友好;制备的复合材料体积比容量高,导电性好,循环稳定性强,可作为锂离子电池正极材料广泛应用于锂硫电池等领域。
本发明公开了一种基于氧化钛纳米管的硫化锂电极及其制备方法。该硫化锂电极包括片状的氧化钛纳米管阵列,以及填充在氧化钛纳米管中的硫化锂颗粒。硫化锂颗粒上包覆有碳层。本发明中硫化锂颗粒被碳壳和氧化钛纳米管包覆,碳壳和氧化钛纳米管对充放电过程中产生的聚硫锂具有空间限域效应,能有效抑制聚硫锂的“穿梭效应”。氧化钛纳米管同时能通过化学键合作用抑制聚硫锂的扩散。一维整齐排列的氧化钛纳米管阵列有利于锂离子的输运。此外,本发明利用氧化钛的光致超亲水性能,在浸入硫酸锂和葡萄糖的水溶液前对氧化钛纳米管阵列进行紫外光照射,使得硫酸锂和葡萄糖的水溶液能够充分注入到氧化钛纳米管中,最终达到对聚硫锂“穿梭效应”的抑制效果。
本实用新型公开了一种锂电池充放电管理系统,包括第一开关、第一开关驱动模块、充电模块、锂电池监控单元、电流检测模块、总电压检测模块、微控制器、锂电池组、第二开关驱动模块、第二开关和电源模块;微控制器与锂电池监控单元、电流检测模块、总电压检测模块、第一开关驱动模块、充电模块以及第二开关驱动模块相连接,接收锂电池监控单元、电流检测模块和总电压检测模块发送的信号,并对这些信号进行分析处理,同时将处理后的控制信号发送给第一开关驱动模块、充电模块和第二开关驱动模块,从而对锂电池充放电进行控制管理。本实用新型通过实时检测电池组的电压、电流、温度,从而防止车载电池的过充、过放、过温及过流等现象,将电池使用的安全隐患降到最低。
一种用于电厂水环式真空泵冷却的溴化锂热泵系统,它主要包括抽凝式汽轮机、凝汽器、水环式真空泵组、水水换热器、溴化锂热泵冷凝器、溴化锂热泵发生器、溴化锂热泵蒸发器、溴化锂热泵吸收器、一组阀门、溶液换热器、溶液泵、一号低温加热器、二号低温加热器;本实用新型利用溴化锂热泵冷却真空泵冷却水,同时利用吸收的热量加热低温加热器中的凝结水;在仅利用低压抽汽且无需额外耗水的情况下,就可以大幅降低真空泵工作水温度,提高系统的热经济性;并充分利用冷源热量加热凝结水,最大限度的利用能源。
本实用新型涉及一种对锂电池进行保护板漏电流检测的测试仪。目的是对锂电池保护板漏电流快速检测并对锂电池产品质量进行监控,测试仪包括产生基准电压的基准电路、产生测试电压的测试电压电路、与基准电路和测试电压电路相连的比较电路;基准电路与测试电压电路并联并共同串联到比较电路。通过测试仪,可以确定锂电池漏电流保护板的工作状况,确定漏电流的大小,并在漏电流过大的时候发出报警声,保证了锂电池的安全性能,并延长锂电池的寿命。
中冶有色为您提供最新的浙江杭州有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!