本实用新型提供一种用于锂离子电池负极材料的预锂化装置。该预锂化装置包括阳极区、阳极导电引线、阴极区、阴极导电引线、隔板组件和监测控制系统;隔板组件将预锂化装置的内部空间分隔为阳极区和阴极区;阳极导电引线连接阳极区和监测控制系统;阴极导电引线连接阴极区和监测控制系统;进料口位于阴极区的顶板上部,用于向阴极区注入锂离子电池负极材料;出料口位于阴极区的下部,用于将预锂化后的锂离子电池负极材料导出阴极区。本实用新型的预锂化装置不需要将锂离子电池负极材料预制成电极片,直接对氧化亚硅粉体颗粒进行预锂化,产物经分离、低温干燥处理后仍然是粉体颗粒。
一种磷酸铁锂锂离子电池片及其加工方法,涉及一种锂锂离子电池。提供一种能够有效地改善集流体与活性物质之间附着性的磷酸铁锂锂离子电池片及其加工方法。磷酸铁锂锂离子电池片设有集流体,在集流体正反两面涂有导电层,所述导电层的组成及其按质量百分比的含量为:导电剂1%~6%,粘结剂3%~5%,余为正极活性物质。将粘结剂与水混合,得粘结胶;在粘结胶中加入导电剂,得导电胶;在导电胶中加入磷酸铁锂,得正极浆料;将正极浆料搅拌,调节粘度为4000~8000mpa.s,过筛,得浆料;将过筛的浆料涂覆于集流体的正反两面,烘干,完成涂布,得磷酸铁锂锂离子电池正极片。
本发明为一种锂离子电池用磷酸锰锂正极材料及其制备方法,该磷酸锰锂正极材料以锰源、磷源、锂源、碳源为原料,且使Mn∶P∶Li的摩尔比为1∶1∶(1~1.05),碳源的掺量为磷酸锰锂产物质量的0.1~50%。其制备方法为,1)分别将锰源、磷源、锂源破碎成0.5~2微米、0.8~1.5微米、0.3~1.5微米的粉末,然后按上述摩尔比称量锰源、磷源、锂源;2)在氮气或氩气气氛保护下,将锰源、磷源、锂源混合搅拌8~12小时后,掺入占磷酸锰锂产物质量0.1~50%的碳源,继续混合10~18小时;3)将混合物模压制成模块;4)将压制好的模块放入刚玉匣体或坩埚中,在惰性气体保护下进行热处理;5)将热处理后所得产物再经过万能粉碎机粉碎、球磨机研磨、过筛、烘干,即得锂离子电池用磷酸锰锂正极材料。
本发明公开了一种废旧磷酸铁锂电池浸取与有机废水处理耦合回收金属锂及处理污水的方法,采用非氧化性无机铁盐浸取磷酸铁锂电池废料,利用Fe3+交换磷酸铁锂中Li+和Fe2+的自发取代反应,实现了废旧磷酸铁锂电池锂元素高效率浸取;浸取出的Fe2+进一步与双氧水组成Fenton试剂,用于处理有机废水,COD降解率高且反应产物绿色,不会产生其他污染;处理废水后Fe3+可再用于磷酸铁锂电池的浸取,实现铁元素的循环高效利用,同步实现废旧磷酸铁锂电池材料中的金属锂回收和有机废水中的有机物降解;本发明相比于传统提锂技术具有节能、安全、廉价和环境友好的优势,降低了废旧磷酸铁锂电池正负极材料的回收成本,提高电池回收效率,同时提供了一种污水处理方案。
公开了一种锂氧电池负极、其制备方法和锂氧电池。锂氧电池负极包括集流体和附着于集流体表面上的以锂碳复合材料为活性材料的电极材料层,所述电极材料层由微纳米级的金属锂‑骨架碳复合材料组成,或者所述电极材料层包含微纳米级的锂合金‑骨架碳复合材料。该锂氧电池负极可以减小锂负极表面的电流密度,从而抑制锂枝晶的生长,提高锂氧电池的安全性,延长锂氧电池的循环寿命。
本发明涉及硫化锂电池技术,旨在提供一种用于铝/硫化锂电池的硫化锂/碳复合材料的制备方法。包括:将硫酸锂溶液与碳源溶液搅拌混合后,滴入液氮中进行闪冻,得到球形颗粒;然后冷冻真空干燥,得到前驱体;在N2气氛保护下,将前驱体升温保温h,使前驱体中碳源材料完成碳化,并原位还原硫酸锂得到碳包覆硫化锂;随炉冷却后研磨粉碎,得到硫化锂/碳复合材料。本发明得到的高载量硫化锂/碳复合材料,其薄壁多级孔碳具有比表面积大和大孔容的特点,能提高承受充放电过程因硫与硫化锂的体积差所产生的体积膨胀。多级孔碳比表面积大,导电性好,具有极高的硫化锂担载能力,特别适用于大容量硫化锂电池的正极材料,具有市场竞争力。
本发明介绍了一种锂离子超级电容器负极预嵌锂的方法。采用含有质量含量2‑15%富锂化合物的正极,与可嵌锂的负极和隔膜组装锂离子超级电容器后置于一容器内,向容器内注入电解液,对锂离子超级电容器进行充电,对可嵌锂的负极实现理论可嵌锂质量30‑90%的预嵌锂量。对负极进行预嵌锂可从一定程度上防止充放电过程中电解液中本体离子浓度的降低和阴离子在正极的不可逆吸附,从而达到改善锂离子超级电容器的充放电性能的目的。
本发明公开了一种利用含锂铝质岩制备磷酸锂的方法,包括如下步骤:S1,将含锂铝质岩和硫磷混酸浸出剂按固液比1:4混合,在100℃下浸出3h,反应结束后,过滤得到含锂浸出液;S2,往所述含锂浸出液中加入双氧水,不断搅拌,再逐渐加入氨水调节pH值至5.5,补加水稀释,过滤得到含锂净化液;S3,进一步将所述含锂净化液蒸发浓缩,形成热的饱和溶液,冷却结晶,析出大部分硫酸铵和磷酸二氢铵混合晶体,得到含锂浓缩液;S4,最后将含锂浓缩液加热至90℃,加入固体碳酸钠,调节pH值至8,继续反应30min,趁热抽滤,用热水洗涤沉淀,烘干得到磷酸锂。本发明具有可靠性高、适应性强、锂浸出率高、铝沉淀率高等优点。
本发明公开一种硅酸钙锂包覆的硅锂合金负极材料的制备方法,属于锂电池技术领域。具体包括以下步骤:前驱体的球磨:将N‑甲基吡咯烷酮、硅粉、氧化钙和锂源化合物粉末的混合物经搅拌0.5h;锂合金复合粉末的制备:取步骤一得到的研磨粉体,置于氩气保护的反应釜内,加热反应釜至350~800℃,真空反应5~10小时之后;负极材料的涂片:取偏硅酸钙锂包覆的锂合金复合材料粉末、导电剂和聚偏氟乙烯混合后,加入溶剂N‑甲基吡咯烷酮后研磨5‑10h,涂敷到铜膜上并于60‑150℃真空烘干24h,然后压制成型,即制得负极。本发明制备的锂硫电池,硅锂放电过程发生锂脱嵌,形成硅,但形成的硅被约束在硅酸钙锂壳内,无法自由移动,从而稳定了负极材料的结构。
本发明属于废旧锂离子电池正极材料回收、修复再生综合利用技术,具体涉及一种废旧磷酸铁锂正极材料的回收再生方法及得到的磷酸铁锂正极材料。该方法包括以下步骤:1)对废旧磷酸铁锂正极极片进行分离,除去铝集流体,得到粉体状的磷酸铁锂正极回收材料;2)添加锂源、铁源和磷源,或者,还添加还原剂,再加入用于溶胀磷酸铁锂正极回收材料中的粘结剂,且溶解或分散锂源、铁源、磷源、还原剂的有机溶剂,将各材料混匀后烘干,得到磷酸铁锂前驱体;3)对应的,在还原性或者惰性气体氛围中烧结,得到修复再生的磷酸铁锂正极材料。本发明结合了物理和机械化学方法回收再生技术,实现废旧磷酸铁锂正极材料的再生利用。
本发明公开了一种锂离子电池负极片、制备方法及应用、锂离子电池,属于锂二次电池技术领域。该负极片由包括以下步骤的方法制备:惰性气氛中,采用静电纺丝技术将含有锂化合物的溶液均布在负极片表面,干燥,即得。本发明采用静电纺丝技术在负极片表面“湿法补锂”,能将含锂化合物均布在负极片表面,形成纤维状、具较大比表面积和孔洞结构的锂带,相较现有的以喷洒或滴加方式补锂,能实现均匀补锂,并达到补锂量精准、可控的有益效果,有效避免负极片析锂或变形。
本发明提供了一种石膏增强剂——锂硅粉和含 有该石膏增强剂的抹灰石膏。使锂盐厂的废渣锂渣不仅作为填 料降低了成本, 可以作为各种石膏的增强剂, 提高石膏的强度, 如 作为β-半水石膏的增强剂, 使由β-半水石膏制备的抹灰石 膏的强度高于混合相抹灰石膏, 且工艺简单, 投资少、见效快, 同 时为锂盐厂解决废渣处理多了一条出路, 减少了对环境的污 染。以锂硅粉作为增强剂和填充料, 仅用半水膏就可配制抹灰石 膏, 而且施工效果好, 速度快。
本发明涉及锂离子电池技术领域,尤其涉及一种长寿命、无枝晶的锂电池用金属锂负极及其制备方法与应用。金属锂具有轻质、理论比容量高、电化学电势低等优点,是公认的最有前途的下一代储能体系的负极。但不可控的锂枝晶生长阻碍其应用。因此开发一种抑制锂枝晶的方法至关重要。本发明利用价格低廉且对环境无污染的SnI2改性锂片,实现了均匀的金属锂沉积。所述方法包括如下步骤:将金属锂平压在SnI2溶液液滴上,以该锂片为负极,在惰性气氛中将其与锂电池所需部件共同组装成固态电池,即得。最终消除锂枝晶的生长,延长了电池的循环寿命,降低了锂枝晶诱导的短路等问题的发生。这种方法通过操作简单,绿色环保,非常有利于规模化生产。
本发明涉及一种固态锂电池用双功能界面修饰层及锂电池,所述双功能界面修饰层包括聚合物电解质层及锂合金层,聚合物电解质层用于和锂电池的电解质接触,锂合金层用于和锂电池的锂负极接触;所述锂合金层中的锂合金至少包括含锂二组分合金、含锂三组分合金、含锂四组分合金中的一种;聚合物电解质层包括聚合物基体和锂盐。本发明提供了一种双功能界面修饰层,该双功能界面修饰层可应用于固态锂金属电池中,能够显著提升电解质/锂负极的界面兼容性,抑制锂枝晶的生长,且制备方法简便,容易操作。
本发明公开了一种锂离子电池用石墨材料补锂的方法,属于锂离子电池技术领域,该锂离子电池用石墨材料补锂的方法,包括在石墨电极表面镀一层锂的步骤。本发明的通过在石墨电极表面镀一层锂来预锂化对电极材料进行补锂的方式,加工安全没有风险,没有增加额外的设备;通过用含有高浓度锂离子的电解液来实现石墨电极表面的镀锂,得到的镀锂层均匀。采用高浓度电解液完成的额外的镀锂,镀在石墨颗粒表面的锂具有较高的电镀/剥离效率,镀锂层均匀分布且无枝晶产生,在石墨颗粒形成微小的颗粒,因此在充放循环过程中可以来回穿梭,造成的死锂很少,这有利于长期循环。
本发明公开了一种锂电池补锂陶瓷隔膜及其制备方法,用于锂离子电池制造。补锂陶瓷隔膜是将混合好的锂粉陶瓷胶液在惰性气体环境下涂布于基膜的一侧表面,在40~90℃的烘箱内烘干后即得到补锂陶瓷隔膜。该补锂方法操作简单,安全高效,避免了金属锂被氧化的风险。组装成锂离子电池时,本发明补锂陶瓷隔膜中的涂层面面向锂离子电池负极极片的一侧,首次充电时,隔膜上的补锂陶瓷涂层中的锂粉能够脱嵌出锂离子,补充负极形成SEI膜损失的Li+,提高锂电池的首次充放电效率以及电芯循环性能;陶瓷颗粒能够增强锂电池隔膜的耐热性,降低隔膜的热收缩性,从而更有效地减少因电池内部短路而引起的电池热失控。
一种厚膜锂霞石湿度敏感传感器元件及其制备方法,它涉及湿度敏感传感器元件及其制备方法。本发明是要解决现有的锂霞石湿度传感器响应慢、制备工艺难度大的技术问题。本发明的一种厚膜锂霞石湿度敏感传感器元件由氧化铝陶瓷基体、涂覆在氧化铝陶瓷基体上的锂霞石涂层和焊接在氧化铝陶瓷基体上的电极组成,其中锂霞石涂层的厚度为0.001mm~0.1mm;制备方法:将锂霞石颗粒和锂霞石溶胶粘结剂研磨后得到的浆料涂覆在氧化铝陶瓷基体上,烧结后再经老化,得到厚膜锂霞石湿度敏感传感器元件。该元件化学性质稳定,响应时间短,制备工艺简单,可应用于高温恶劣坏境中的湿度检测。
本发明公开了一种锂离子电池用氧化钴镍锰锂-氧化铜复合正极材料及其制备方法,其中复合正极材料是在氧化钴镍锰锂的表面包覆氧化铜得到的,所述复合正极材料的化学通式为LiCoxNiyMn1-x-yO2/CuO,其中0.2≤x≤0.4,0.3≤y≤0.7;其制备方法是首先通过高温固相法制备氧化钴镍锰锂三元复合氧化物锂盐,然后通过高温烧结在所述氧化钴镍锰锂的表面包覆氧化铜制备得到锂离子电池用氧化钴镍锰锂-氧化铜复合正极材料。本发明具有比容量高,循环特性好,生产周期短等优点,适合工业化生产,可应用于电动汽车、储能设备和电动工具等领域。
本发明公开了一种锂离子电池正极材料硅酸锰锂的制备方法,该方法将一定比例的锂盐、锰盐和二氧化硅混合物粉末充分研磨后,在惰性气氛下煅烧,得到硅酸锰锂锂离子电池正极材料。本发明制备的硅酸锰锂材料,工艺简单、安全,成本低廉。得到的硅酸锰锂材料具有成本低、电化学性能好、环境友好等优点。在锂离子电池领域具有广泛的应用前景。
本发明提供了一种高锂固溶度的预锂化聚苯硫醚、制造方法及应用,所述制备方法为:将NMP、Li2S、p‑DCB和LiOH经脱水后,在220℃聚合,中和后再将液相直接蒸发或升华去除NMP和H2O,一步实现生成物到预锂化的反应物的转换,并原位实现聚苯硫醚和锂盐的纳米级混合,加入的氯离子络合剂有效分离锂离子和氯离子,并俘获氯离子,促进聚苯硫醚链上的硫位对锂离子的俘获,提高锂的固溶度;由于氯离子络合剂对氯离子的钉扎作用,进一步提高了预锂化聚苯硫醚的锂离子电导率。所制备的预锂化聚苯硫醚的晶体结构中的锂的固溶度高,材料中的氯离子被有效束缚,为单一锂离子的优良导体。
一种固态锂电池封装结构,包括叠设的阻挡层、阻隔层和保护层,所述阻挡层包括热塑性塑料。一种固态锂电池,包括锂电池电芯及上述封装结构,锂电池电芯包括叠设的正极结构、固态电解质和负极结构,定义所述锂电池电芯中正极结构以及负极结构远离固态电解质的一侧为两相对的端面,两端面之间的锂电池电芯表面为锂电池电芯侧面,所述封装结构围设在锂电池电芯侧面。一种固态锂电池的封装方法,提供上述锂电池电芯,在所述锂电池电芯侧面从靠近锂电池电芯到远离锂电池电芯依次形成阻挡层、阻隔层和保护层,所述阻挡层包括热塑性塑料。本实用新型上述技术方案,具有结构致密,与锂电池电芯紧密结合,保护兼容锂合金的良好性能。
本发明涉及矿石提锂技术领域,尤其涉及一种从含锂矿物中提取锂的方法。该方法包括以下步骤:磨浸,对含锂矿物与含钙物质的混合物料边研磨边浸出,形成浆料;其中,所述含钙物质与所述含锂矿物的粒径比为0.1:1~10:1,所述含钙物质的粒径小于或者等于15微米,所述含锂矿物的粒径小于或者等于15微米,所述含钙物质为碳酸钙、氢氧化钙、氧化钙、以碳酸钙为主要成分的物质、以氢氧化钙为主要成分的物质或以氧化钙为主要成分的物质中的一种或多种的混合物;压浸,对磨浸后的所述浆料进行压煮反应,使所述含锂矿物中的锂离子浸出。本发明所采用的方法具有对环境友好、较高的锂浸出率、能耗低、工艺简化易操作等多重优势。
本发明公开了一种补锂集流体、补锂电极,所述补锂集流体包括金属箔材和补锂材料,所述金属箔材的表面开设有若干个凹孔,所述补锂材料填充在所述凹孔内,所述补锂材料包括锂粉和粘合剂。本发明的补锂集流体安全性高,补锂效果好。
本发明涉及负极补锂方法及锂离子储能器件的制作方法,所述锂离子储能器件的制作方法,包括步骤:S1、制作多孔负极带;S2、将两卷多孔负极带和一卷金属锂电极层堆叠在一起,经过预压后形成夹层结构的负极极片;S3、制作形成锂离子储能器件。所述负极补锂方法:采用外部电源的控制方式进行补锂,负极极耳接外部电源的正极,金属锂电极接外部电源的负极,然后采用恒电流、恒电压或恒功率中的一种或两种以上的测试方法进行补锂。本发明的有益效果是:本发明采用双面镀铜薄膜作为基材单面涂覆负极活性物质,虽然双层镀铜薄膜集流体体积增加了,但是由于材质质量轻可以很好地保证电池的能量密度。
本发明提供一种从废旧磷酸铁锂电池中再生制备磷酸铁锂的方法,所述方法包括一下步骤:(1)将废旧电池破碎拆解,分离废旧电池中的铜粉、铝粉和磷酸铁锂粉末;(2)分析步骤(1)得到的磷酸铁锂粉末中铁、磷、锂的摩尔比,调整锂、磷、铁的摩尔比,加入酸以及还原剂调节溶液pH小于1,加入羧基化纳米纤维素,得到混合液;(3)去除步骤(2)中得到的混合液中的溶剂,并将得到的固体煅烧得到各组分分布均匀的磷酸铁锂正极材料。所述方法不使用强酸和任何的碱性溶液,减少了对仪器设备的腐蚀,减少对环境的污染,同时使用纳米纤维素上的羧基吸附溶液中的磷、锂、铁元素,使磷、锂、铁元素能很好得分布在纳米纤维素上,克服了不均匀分布的现象。
蒽醌在锂氧电池中的应用及其得到的蒽醌锂氧电池,属于锂氧气电池领域,所述锂氧电池的组装过程如下:选用锂为负极,负载有碳或四氧化三钴的基底为正极,正极和负极之间被隔膜隔开,组装好后并进行封装,即得;所述基底为不锈钢基底或碳纸,电极面积是1 cm2,所述隔膜上浸渗有溶有蒽醌的电解质。本发明采用蒽醌分子捕获并稳定超氧化锂,在电解质中形成稳定的蒽醌‑超氧化锂中间体,使锂氧气电池正极的氧还原活性提高了10倍;在使用不同碳和金属氧化物为正极组装的锂空气电池中,蒽醌的存在使电池容量提高3倍以上,是迄今为止最先进的可溶性氧化还原介质。
本发明涉及一种钛酸锂镧复合材料及其制备方法、锂离子固态电池。钛酸锂镧复合材料由反钙态矿结构的Li3OX和钙态矿结构的钛酸锂镧复合而成,Li3OX分布在钛酸锂镧晶粒间的晶界处并部分扩散至钛酸锂镧的晶粒内;所述钛酸锂镧的化学式为Li3xLa2/3‑xTiO3,0<x<0.16;Li3OX中,X为卤素。本发明的钛酸锂镧复合材料,利用富锂相、低熔点的Li3OX对LLTO进行阳离子补充,改变了晶粒内部的载流子或阳离子空位的无序度,提高了晶粒内部离子电导,补偿了晶界处空间电荷层内载流子的消耗,有效的提高晶界和整体离子电导率。
本发明涉及锂电池领域,特别涉及负极层及其制备方法、锂电池电芯及锂电池。所述制备方法中,先在集流体表面上形成金属混合物,然后将金属混合物加热至180‑220℃,并获得由Al、Cu或Ni元素中一种或几种组合的金属或金属化合物形成的混合金属骨架以及熔融填充在混合金属骨架中的锂金属。上述混合金属骨架可提高锂金属在所述负极层中分布的均匀性。所述负极层形成于所述集流体一表面上,所述负极层中所述混合金属骨架可为所述负极层中的锂金属提供支撑骨架。具有上述负极层的锂电池可在锂离子迁移的过程中,避免负极层的结构发生改变或坍塌,从而可延长锂电池的循环寿命。
本发明涉及一种锰酸锂锂离子电池正极材料及其制备方法和用途,所述锰酸锂锂离子正极材料为碳包覆双掺杂锰酸锂锂离子电池正极材料,其通式为C@Li2Mn0.5M0.5O2F,其制备方法采用共沉淀法制备得到氢氧化物前驱体,再将氢氧化物前驱体与锂源、氟源和碳源混合,在保护气氛下进行热处理,得到所述正极材料。本发明所述的锂离子电池正极材料具有高电导率,高充电截止电压,良好的电化学循环稳定性和较高的放电容量。本发明提供的制备方法工艺简单,易于控制。本发明提供的锂离子电池具有优秀的倍率性能和循环性能。
本发明公开了一种从磷酸锂中综合回收锂和磷的方法。本发明的方法实现了对磷酸锂材料中的磷和锂的高效综合回收的目标,对于锂的回收率高达98.5%以上,碳酸锂的纯度达99%以上,同时对磷的回收率达96%以上,磷酸一氢盐的纯度达95%以上。本发明的方法对磷酸锂的纯度要求较低,可实现在磷酸锂纯度为30%~95%的范围内对其中的磷和锂的高效综合回收,并且局限性小,同时本发明的回收方法条件温和,反应过程中无气体产生,也不会放出大量热,因而污染小,对设备要求低,整个反应易于控制,且得到的副产物为磷酸氢盐,利用价值高,整个回收成本低,有利于进行大规模的实际应用。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!