本发明公开了一种锂离子电池正极材料氧化锰镍钴锂的制备方法,该方法将硝酸镍、硝酸锰和硝酸钴溶解在氢氧化锰的溶液中加入750毫升去离子水中反应,形成良好的前体,前体在碱性条件下被加入到锂盐溶液中,以形成前驱体,前驱体和锂盐混合球磨、粉碎、烧制,得到氧化锰镍钴锂,其优点是:通过将锂化合物和氧化锰镍钴锂在溶剂中充分混合,可以提高锂元素分布的均匀性,制备的材料满足化学计量,从而大大提高了材料的循环稳定,在600℃~1000℃的温度下氧化气氛焙烧6~30h,分解得到复合氢氧化锰溶液,与电解液的相容性好,循环性能优异,冷却,粉碎后,分级,过目筛,混批得到氧化锰镍钴锂,可在小型通讯和小型动力领域地应用。
本发明属于锂离子电池技术领域,具体涉及一种应用于锂离子电池钛酸锂负极复合材料的制备方法,包括固相法合成钛酸锂材料的步骤和碳包覆钛酸锂复合材料的合成步骤。相比于现有技术,本发明对钛酸锂进行碳包覆提高了其电导率,并且降低了电阻和极化,制得的碳包覆钛酸锂负极复合材料比容量高,循环性能好,可广泛应用于各种锂离子电池,同时,通过热处理和超声处理,得到厚度均匀的碳包覆层,解决钛酸锂的高倍率性能较差和容易胀气的问题,并且不影响其尖晶石结构;此外,本发明的制备方法成本低廉,工艺简单,适合于大规模的工业化生产。
本发明公开了一种添加锂锡合金、碘化银和氯化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法包括以下步骤:1)在气氛保护条件下,按2.5?4.0:0.5?1.0:0.02?0.1:0.01?0.05的摩尔比称取硫化锂、硫化磷、锂锡合金粉末和硫磺,混合均匀,得到锂硫磷锡混合物;2)在气氛保护及安全红光条件下,取锂硫磷锡混合物、碘化银和氯化银,置于球磨罐中球磨,得到含碘化银和氯化银的非晶态锂硫磷锡混合物;3)将步骤2)所得混合物在气氛保护条件下密封,之后于真空条件下升温至100?200℃进行热处理,即得。本发明通过同时添加锂锡合金、碘化银和氯化银以提升所得固体电解质材料的锂离子传导率。
本发明涉及一种锂离子电池外壳残留锂盐的定量检测方法,其包括以下步骤:样品制备、定性分析、固相萃取、对比溶液配制、标准溶液配制、目标物含量测定、验证。发明对锂电池外壳残留锂盐进行准确地定量检测,该检测方法易于操作且定量准确,无需采用价格昂贵的原子吸收或原子发射技术,能够快速分析锂离子电池外壳中存在的不同形态的锂盐的含量;而且可以针对不同阶段锂盐反应程度进行监控,对于锂电池后期清洗及锂盐失效分析具有重要的意义。
本发明公开了一种底部预制毛刺的锂离子电池外壳,包括锂离子电池外壳,所述锂离子电池外壳的底部用于与极耳连接的一侧设置有毛刺。本发明在锂离子电池外壳的底部设置毛刺,能有效克服多极耳点底焊接过程中出现的虚焊现象,能够提高锂离子电池外壳与多极耳点底的焊接强度,有效降低内阻,提高锂离子电池的点底可靠性。本发明还公开了一种锂离子电池的制备方法,通过在成型模具冲头顶端预加工出凹孔,从而经过深冲成型后制得底部预制毛刺的锂离子电池外壳,然后与极耳点底焊接,再经后续处理得到锂离子电池,可以大大提高成品率。
本发明涉及一种锂离子电池正极材料硅酸钒锂的制备方法,所述方法通过对硅酸钒锂Li6V2(SiO4)3添加M元素进行掺杂改性得到锂离子电池正极材料硅酸钒锂;所述M元素选自铝、锂、氟、硼、银、铜、铬、锌、钛、铋、锗、镓、锆、锡、硅、铁、钴、镍、钒、镁、钙、锶、钡、钨、钼、铌或镉中的任意一种或者至少两种的混合物。本发明所述方法工艺简单,制备得到的锂离子电池正极材料硅酸钒锂,具有良好的电化学性能和循环性能,在0.2C倍率时,在1.5~4.8V的充放电范围内,首次放电比容量,最大可达275mAh/g,循环40次后容量保持率大于78%,在锂离子电池领域具有广阔的应用前景。
本实用新型公开了一种用于卷绕型锂离子电池的负极极片的预锂化装置,预锂化加工机构的第一压紧模块和第二压紧模块相对设置且二者之间形成加工通道,第一压紧模块朝向第二压紧模块一侧设有锂金属层,锂金属层表面覆盖有隔膜,第一压紧模块和第二压紧模块采用导电材料制成且第一压紧模块和第二压紧模块电连接,放卷机构和收卷机构分别位于所述加工通道两侧。通过上述优化设计的用于卷绕型锂离子电池的负极极片的预锂化装置,通过锂金属层与负极极片之间的电压差,使得锂离子通过隔膜传导到负极极片上,对负极极片进行预锂化处理,实现对负极极片表面连续预锂化,提高安全性,并且提高生产效率。
一种从锂云母矿中回收锂、铷、和/或铯的系统,其特征在于,该系统依次连通地包括:锂云母矿石细磨装置;锂云母矿石细磨粉与硫酸盐的配料装置;锂云母矿石细磨粉与硫酸盐的V型混料机;锂云母矿石细磨粉与硫酸盐的造粒机;高温推板焙烧炉;球磨机及其球磨过筛装置;浸出桶;除杂萃取槽;三效蒸发器;以及用于碳酸钠盐沉淀制备碳酸锂的反应斧,高温推板焙烧炉设有焙烧温度控制器和焙烧时间控制器;浸出桶设有稀H2SO4注入口和稀H2SO4浓度控制器;用于碳酸钠盐沉淀制备碳酸锂的反应斧设有沉锂温度控制器。本实用新型锂总的收率可达到80.9%。产出的碳酸锂纯度能够稳定在99.25;硫酸铯纯度能达到80.69%,铯的总收率为40.14%,铷的总收率为32.66%。
一种提升石榴石型锂离子固体电解质致密度及与金属锂润湿性的制备方法,属于锂离子固体电解质制备领域。合成步骤主要分为两步,第一步:在空气气氛下使用高能球磨将一定比例的固态电解质粉末、Al源和低沸点Li源均匀混合,球磨后一部分Li源因暴露于空气中可能形成碳酸锂;第二步:通过程序升温第一阶段将固态电解质粉末中添加的Al源转化为Al2O3,并与部分锂源及第一步生成的碳酸锂及Li源反应生成亲锂的偏铝酸锂类似物,程序升温第二阶段中,过量的低沸点Li源转化为熔融的“粘结剂”,促进了固态电解质的致密化。本发明改性的固态电解质片亲锂性、致密度和电化学性能均显著提升。同时,该工艺操作简单方便,适合大规模工业生产。
本发明提供了一种负极预锂化补锂容量的计算方法及其应用,通过该公式的计算,可以精准的计算出负极所需的补锂量,使得循环过程中正极单位面积实际脱嵌锂容量与正极单位面积可接收脱嵌锂容量相等,此时正极的容量可完全发挥出来,实现精确把握负极补锂预锂化的程度,补充首次充放电过程中消耗的正极活性锂,提高锂离子电池的容量密度、能量密度。
本发明公开了锂辉石矿石中锂的高效多功能浸出工艺,属于湿法冶金技术领域,具体涉及锂盐生产技术领域,以解决现有的生产工艺大部分K会富集于析钠母液,锂渣中还含有高价值金属钽铌,锂辉石酸熟料的浸出效率低下的问题,采用酸性调浆工艺,避免了浸出过程中酸熟料浸出逆反应,提高锂辉石中锂资源浸出率;通过磁选工艺将锂辉石尾矿中的钽铌精矿有价金属回收,提高锂渣再利用率;通过黄钾铁矾法除去生产系统和矿石的钾,并利用传统浸出调浆工艺除去矿石和除钾工艺产生的铁,黄钾铁矾除钾与浸出工艺耦合,解决生产工艺钾离子富集,并提高除钾工艺适配性,最终实现高效浸出多功能化调浆。
本发明涉及一种从盐湖卤水中提取锂并制备磷酸锂的方法及其用途,本发明采用过量草酸作为沉淀剂除去盐湖卤水中钙、镁等杂质金属离子,获得含有锂离子的滤液,滤液中的磷酸根与锂离子相互作用,并结合微波加热调节磷酸锂沉淀速率和造孔,从而得到纳米级多孔磷酸锂;本发明所述方法对盐湖卤水中锂的提取率>94%,制备得到的纳米级多孔磷酸锂的一次粒径在10‑95nm,二次粒径在100‑1000nm,孔隙率为50‑85%,各杂质元素含量在200ppm以下,且由其制备得到的磷酸铁锂/碳复合材料的电化学性能也明显提高。
本发明提供一种从废旧钴酸锂电池中回收锂钴的浸出体系及其方法和应用,属于废弃资源回收利用技术领域。与传统的采用酸液浸出锂的方法不同,本申请采用钴酸锂‑聚氯乙烯‑水浸出体系,一步将钴酸锂电池正极材料中的锂钴浸出,且不需要使用酸液,相比于其他浸出锂的方法,本发明所使用的材料为废弃的聚氯乙烯以及水,原料成本低,且锂钴浸出效率较高,同时可实现废旧锂电池正极材料及废弃聚氯乙烯的协同处置,因此经济和环保效益好,具有良好的实际应用之价值。
本发明涉及一种锂离子电池结构,包括:电芯和富含锂离子的电解液;所述电芯由隔膜、负极极片和正极极片按照隔膜、负极极片、隔膜、正极极片的顺序卷绕形成;所述富含锂离子的电解液注入到电芯中;负极极片由集流体、集流体上涂覆有活性物质的涂覆区、未涂覆活性物质的集流体留白区和尾部补锂区构成。本发明的有益效果是:本发明在负极极片集流体上设有涂覆区,负极极片的集流体留白区和含锂材料相结合形成尾部补锂区,通过电解液实现补锂;避免了高活性锂源与负极直接接触所造成的热量积累,同时和现有的锂离子电池制备工艺兼容性好、效率高、无安全性问题,适合产业化批量生产。
本发明提供一种废旧锂离子电池正极活性物质溶解方法,包括将废旧磷酸铁锂粉料加入有机酸溶解液的水溶液中加热溶解,然后加入双氧水,过滤得到澄清溶解液;调节澄清溶解液中锂源、铁源、磷源的含量,得到调解液;将调解液进行干燥处理后得到磷酸铁锂的前驱体;将前驱体在氮气保护下进行热处理,得到碳包覆的磷酸铁锂。本发明引入混合有机酸结合双氧水对磷酸铁锂正极粉进行溶解,溶解后通过过滤除去正极材料中的包覆碳等杂质,通过调节磷源、铁源和锂源的比例后通过喷雾干燥获得前驱体,并通过氮气保护下进行热处理,以其中的有机酸为碳源,得到碳包覆的磷酸铁锂。实现对碳包覆量的调节,获得高性能的磷酸铁锂。
本发明为一种从废锂电池负极材料中分离锂和石墨并利用石墨为原料制备石墨烯的方法。该方法包括负极石墨材料的预处理,废锂电池混合材料中的锂离子的分离浸出,石墨烯的制备。预处理主要包括锂电池的拆解、石墨材料的剥离、有机杂物的去除等。废锂电池混合材料中的锂离子的分离浸出包括对酸浓度、固液比、时间、温度和酸/氧化剂体积比等指标的控制,最后通过低温搅拌、过滤等方法,实现锂离子的回收。制备石墨烯包括石墨的氧化和还原,氧化主要包括氧化剂和升温过程等工艺参数的控制和调节,还原主要调节pH、水合肼与氧化石墨比值等参数。本方法通过一系列组合工艺的应用,最终得到锂富集浸出液和石墨烯。
本发明所要解决的技术问题是提供一种废旧锂电池正极材料,尤其是镍钴锰酸锂三元材料中的锂的回收方法。本发明方法包括如下步骤:a、煅烧:将废旧锂电池正极材料在450~550℃下煅烧3~7min,冷却至常温,粉碎,筛分,得到镍钴锰酸锂三元材料;b、球磨:将镍钴锰酸锂三元材料与球磨辅料进行球磨,得到球磨料;c、分离:将球磨料进行水浸,固液分离,液体为含锂溶液。本发明采用机械球磨后,再水浸回收镍钴锰酸锂中的锂,无废渣、废液产生,工艺简单,安全环保。
本发明提供了一种添加锂硅合金、溴化银和氯化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法,包括以下步骤:1)在气氛保护条件下,按2.5?3.5:0.5?1.0:0.05?0.20:0.01?0.1的摩尔比称取硫化锂、硫化磷、锂硅合金粉末和硫磺,混合均匀,得到锂硫磷硅混合物;2)在气氛保护及安全红光条件下,取锂硫磷硅混合物、溴化银和氯化银,置于球磨罐中球磨,得到含溴化银和氯化银的非晶态锂硫磷硅混合物;3)步骤2)所得混合物在气氛保护条件下密封,之后于真空条件下升温至100?180℃进行热处理,即得。本发明通过同时添加锂硅合金、溴化银和氯化银以提升所得固体电解质材料的锂离子传导率。
一种锂离子动力电池隔离膜及其制备方法和锂离子动力电池,其中,锂离子动力电池隔离膜,包括微孔基膜,在所述微孔基膜的至少一面涂布有涂布浆料层,所述涂布浆料层包括重量百分比的如下组份,化工连接料10-25%;增稠剂1-3%;研磨浆料25-55%;消泡剂0.1-0.3%;润湿剂0.1-0.3%;分散剂0.1-0.3%;流平剂0.1-0.3%。本发明采用价格低廉资源丰富的沉淀法硫酸钡作为研磨浆料或涂布浆料的主要原料,可以大大地降低研磨浆料和涂布浆料的成本;相对于现有技术公开的锂离子动力电池隔离膜而言,用氮化铝代替了三氧化二铝,而氮化铝在做成电池后,不会与锂电池正极片中的磷酸铁锂发生化学反应,不会生成铝酸三锂(Li3AlO3),因此,在电池使用的过程中,不存在刺破隔离膜的问题,这样可以提高锂电池的安全性和延长锂电池的使用寿命。
三维结构泡沫金属/磷酸铁锂一体电极、其制备方法及以其为正极极片的锂离子电池,涉及泡沫金属/磷酸铁锂一体电极、其制备方法及以其为正极片的锂离子电池。解决现有二维磷酸铁锂电极仍存在大倍率充放电性能较差的问题。一体电极是以泡沫金属为支撑体和集流体,纳米磷酸铁锂颗粒在泡沫金属表面原位生成并固定于泡沫金属骨架表面得到。以一体电极为正极片的锂离子电池。将泡沫金属作为支撑体和集流体可形成三维立体的导电网络,增加材料电子导电性,使电化学反应表面积增加,降低电化学反应过程中的界面电流密度,减小电化学反应极化。锂离子电池在5C充放电倍率下,40次循环后锂离子电池的容量保持率仍高于90%。
本发明涉及一种锂离子电池正极材料磷酸铁锂的制备方法,该方法采用在液相条件下合成反应前驱体,再进行高温煅烧制备锂离子电池正极材料磷酸铁锂,包括将锂源、磷源化合物和掺杂元素化合物溶于去离子水中,然后调节pH=2~4,充分反应后,加入导电有机物前驱体和铁源化合物,搅拌混合均匀,得到含有锂、铁、磷和掺杂金属元素的混合物,再经煅烧处理得到锂离子电池正极材料磷酸铁锂。与现有技术相比,本发明工艺合理,操作简单,通过简单的工艺步骤很好地控制了材料的化学成分和颗粒形貌大小,提高了材料的导电性和锂离子扩散速率,合成的材料倍率充放和循环性能都得到了较大的改善,适合于工业化生产。
本公开涉及一种锂电池的负极及其制备方法和锂电池,该负极包括负极基体和覆盖在所述负极基体的至少一个主表面上的隔离保护膜;所述负极基体含有负极活性材料且所述负极活性材料为锂金属负极活性材料、锂硅碳复合负极活性材料和锂合金负极活性材料中的一种或几种;所述隔离保护膜含有聚碳酸酯类聚合物和有机锂盐;所述有机锂盐为在碳酸甲乙酯中溶解度小于0.1mol/L的有机锂盐。本公开的锂电池的负极的隔离保护膜能够有效的阻隔活性金属锂与电解液溶中自由溶剂的接触,并且避免隔离保护膜本身被电解液侵蚀,从而延长了锂金属负极的锂电池的循环寿命。
本发明属于全固态锂电池领域,公开了一种锂镧锆氧固态电解质,包括60~75wt%聚合物、8~15wt%锂盐和15~30wt%锂镧锆氧三维多孔无机网络,所述聚合物原位复合于锂镧锆氧三维多孔无机网络。本发明还公开了锂镧锆氧固态电解质的制备方法以及其在锂离子电池领域的应用。锂镧锆氧三维多孔网络提供了连续的锂离子传输通道,使离子电导率更高。同时,锂镧锆氧三维多孔网络的存在为复合固态电解质提供了一定的力学性能,能够抑制锂枝晶的生长,提高电池的高温性能和安全性。从而优化和提高了固态电解质与电极间的界面相容性和稳定性,由此组成的全固态锂电池具有循环性能稳定、倍率性能高、界面阻抗低、稳定性好的优点。
本发明提供一种锂电负极材料钛酸锂的制备方法,锂的可溶性化合物加入蒸馏水溶解;壳聚糖加入到冰醋酸溶液内,超声至完全溶解为均一的淡黄色液体;向壳聚糖溶液内加入二氧化钛粉末,超声,磁力搅拌10~60分钟;向壳聚糖溶液内加入a步骤中溶解好的溶液中,超声搅拌10~60分钟;加入环氧氯丙烷,持续磁力搅拌5~15小时;将所得溶液转移至培养皿内,用保鲜膜盖好,-80℃下冷冻,将冷冻好的样品放入冷冻干燥机,抽真空,干燥10~48小时,干燥好的样品放入坩埚,送入管式炉下600~900℃煅烧8-15小时,得到锂电负极材料钛酸锂。本方法制备的钛酸锂具有优异的大倍率放电特性,适合于动力电池使用。
本发明公开了一种具有富锂相结构的高能量密度锂二次电池正极材料及应用。正极材料包括具有富锂相结构的层状氧化物和/或具有富锂相结构的尖晶石结构氧化物;具有富锂相结构的层状氧化物和/或具有富锂相结构的尖晶石结构氧化物为过量的锂原子插入原始结构的层状氧化物和/或尖晶石结构氧化物构成,在正极材料首次脱锂后,富锂相结构转变为原始结构,材料体相中锂原子占据周围氧原子构成的空间结构的位置发生变化且保持晶体结构不坍塌;层状氧化物正极材料通式为Li1+xMO2,其中包含具有富锂相结构的层状氧化物Li2MO2;尖晶石结构氧化物正极材料通式为Li1+xM2O4,其中包含具有富锂相结构的尖晶石结构氧化物Li2M2O4;M包括Co、Ni、Mn中的一种或多种;0<X≤1。
本发明提供了一种锂离子二次电池正极材料磷酸铁锂的制备方法,将三价铁源、碳源、磷酸根源、锂源、掺杂离子混合均匀,通过干燥等工序得到磷酸铁锂前驱体混合物,将混合物在还原性气氛中以0.1-10℃/min的速度升温加热,在200-800℃煅烧5-25h,然后随炉冷却至室温,磨细得到锂离子电极正极材料。该制备方法工艺简单,成本低,所得锂电极正极材料具有良好的放电和循环性能,工艺参数容易控制,批次稳定性好,适合大规模工业化生产。
本发明公开了磷酸锰铁锂电极材料组装水溶液锂离子电池体系的方法,用磷酸锰铁锂电极材料作为正极活性材料;用除氧后的饱和硝酸锂水溶液,替代传统锂离子电池中的有机电解液设计新型锂离子电池;用溶胶凝胶法和固相烧结法制备磷酸锰铁锂正极材料,采用固相分段法制备钒酸锂负极材料。与传统锂离子电池相比,水溶液锂离子电池彻底解决了安全隐患,不必在苛刻的真空环境、干湿度严格控制及其保护气氛下组装电池,水溶液锂离子电池的电解液廉价且其离子电导率比有机电解液高出两个数量级。本发明的水溶液锂离子电池在高倍率下的放电容量高于低倍率下的放电容量,适于动力电池在高功率领域和快速充放电条件下的应用,具有实用价值。
本发明公开了一种合成烷基锂化合物所产生的 含锂废液处理方法, 在0.01~0.03MPa氮气压力保护和0~60℃ 的温度下将含锂废液进行水解, 经盐酸两次调pH值和两次过滤 后, 滤液按每molLiCl加1.00~1.03molNa2CO3, 在 90~95℃的温度下反应制得Li2CO3产品, 或将滤液脱 水得LiCl结晶后电解得金属锂, 解决了现有技术中锂渣难以回收或回 收工艺不稳定、不安全等问题, 具有工艺简单、操作方便、安全可靠、 回收率高及产品质量好等优点, 广泛适用于合成烷基锂工艺应用。
本发明提供一种用作锂蓄电池阴极活性材料的 尖晶石型锂锰复合氧化物, 其特征在于所述尖晶石型锂锰复合 氧化物的平均粒径为1—5微米、比表面积为2—10m2/g。还 提供一种尖晶石型氧化锂镁配合物的制造方法, 包括 : 1)雾化 和热解至少一种含有构成尖晶石型锂锰复合氧化物的金属 元素化合物水溶液和醇溶液, 以获得上述复合氧化物, 以 及2)将上述尖晶石型锂锰复合氧化物退火以将其平均粒 径增加至1—5微米, 并将其比表面积调节至2—10m2/g。
本发明涉及锂离子电池正极材料,尤其是一种锂离子快导体改性磷酸铁锂材料的制备方法,其特点是,包括如下步骤:(1)按照锂离子快导体的组成成份,将包覆原料锂源、A源、B源、N源、硅源和磷源,与待包覆的磷酸铁锂混合,制成前躯体后充分干燥;(2)将得到的前躯体在惰性气氛中烧结,烧结温度为400~1000℃,保温时间2~20小时。本发明在纳米磷酸铁锂的表面合成了一层锂离子快导体膜,这层锂离子快导体膜极大地提高了纳米磷酸铁锂的功率性能。特别是玻璃态的锂离子快导体是众所周知的良好的、稳定的锂离子导体,同时能够用过渡金属掺杂来获得良好的导电性。使用发明制备的材料用来制造电池,可以实现40c以上大电流充放电。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!