本发明提供了一种磷酸亚铁锂前躯体的制备方法,包括以下步骤:(a)将含有物质A的溶液加入到含有物质B的溶液中,混合反应后,在保护气氛条件下加入铁源,反应得到含有磷酸氢亚铁的混合体系;(b)将上述混合体系在非氧化条件下升温至120-220°C,保温,再将锂源加入所述混合体系中,反应得到沉淀物;(c)将沉淀物洗涤、烘干后,得到磷酸亚铁锂前躯体;其中,物质A为碱金属强碱或氨水中的一种或几种;物质B为磷酸、磷酸二氢铵或磷酸二氢碱金属盐中的一种或几种。本发明还提供了一种磷酸亚铁锂材料及磷酸亚铁锂/碳复合材料的制备方法。采用本发明方法所制得的材料纯度更高,比容量及循环后容量保持率等方面性能更为优越。
本发明容易且廉价地制造充放电输出电流密度大、充放电循环寿命优异的全固体锂二次电池。全固体锂二次电池的制造方法中,通过将在各种硫化物系锂离子传导性固体电解质中混合Α-氧化铝得到的混合电解质玻璃化来得到其离子传导性被改善了的新锂离子传导体。构成使用了该锂离子传导体的电解质层8以及由正负电极合材3、7形成的正负电极(I)、(II)。接着,将这些正负电极(I)、(II)中的至少1层与电解质层8层叠,在电解质不会结晶化的条件下,通过加热和压缩而一体化来制作电池。
本发明的目的在于提供一种锂二次电池用正极活性物质材料,其在用作锂二次电池正极材料时,可以在谋求低成本化及高容量化的同时实现高安全性、性能优异的锂二次电池。为此,本发明提供下述锂二次电池正极材料用锂过渡金属类化合物粉末及其制造方法、以及锂二次电池用正极及锂二次电池,所述锂二次电池正极材料用锂过渡金属类化合物粉末包含具有能够嵌入和脱嵌锂离子功能的锂过渡金属类化合物,其中,该粉末的粒子内部包含具有利用SEM-EDX法检测到的来自下述元素的峰的化合物,所述元素为选自周期表第3周期以后的第16族元素中的至少一种元素、以及选自第5周期及第6周期的第5~7族元素中的至少一种元素。
本发明涉及一种用于锂硫电池化学诱捕多硫化物的硼化钛及其制备方法与应用。所述硼化钛的制备方法包括步骤如下:将二氧化钛、含镁还原剂和含硼化合物研磨混合均匀,加入去离子水,得反应液;于温度120‑180℃下水热反应1‑6h;经洗涤、干燥得硼化钛。所制备的硼化钛具有高的电导率,制备简单、原料廉价、无毒、耗能少,对设备要求低,可大批量生产;将其应用于锂硫电池能够有效解决锂硫电池充放电过程中多硫化物的穿梭问题,展现出高的比容量、优异的长循环寿命、高的库伦效率以及减轻的自放电行为。
本发明属于锂离子电池技术领域,公开了一种高压实磷酸铁锂锂离子电池非水电解液及锂离子电池。本发明的高压实磷酸铁锂锂离子电池非水电解液包括非水性有机溶剂、电解质锂盐和添加剂,所述添加剂包括常规添加剂和具有式(Ⅰ)结构的氟代醚类添加剂。该高压实磷酸铁锂锂离子电池非水电解液中的添加剂具有良好的浸润性能和耐氧化性能,可有效解决高压实磷酸铁锂锂离子电池因正负极片压实密度过大,导致极片和隔膜吸液量不足和活化时间过长,从而影响磷酸铁锂电池的循环性能、高温储存性能和低温放电性能以及生产效率的问题。
本公开涉及一种碳酸锂颗粒及由含锂卤水制备碳酸锂颗粒的方法。该碳酸锂颗粒具有多面体形貌,所述碳酸锂颗粒的特征峰的半峰宽2θ为0.1°~0.3°,该碳酸锂颗结晶性好、稳定性高,能够满足锂离子电池正极材料用锂盐的要求。本公开的由含锂卤水制备碳酸锂颗粒的方法基于膜分离技术,无需使用具有污染性的碱试剂,绿色环保,而且制备的碳酸锂颗粒纯度高,粒度均匀且可控,D50可实现从500nm至180μm之间的调控,可满足不同应用领域尤其是锂离子电池领域的使用需求。
本发明提供了一种粘土型锂矿的提锂方法及制备铝酸锂的方法,属于提锂技术领域,所述提锂方法包括:将粘土型锂矿、碳酸氢钠和水进行混合,得到原矿浆;将所述原矿浆进行浸出,后固液分离,得到固相渣和含锂浸出液;其中,在所述原矿浆中,所述碳酸氢钠为过饱和状态。本申请使用过饱和的碳酸氢钠溶液浸出锂矿时,不仅可实现较高的锂浸出率(锂浸出率最高可达92%),同时通过控制原矿浆pH值范围使得溶液中铝、硅、铁和镁等杂质含量都比较低,可实现黏土型锂矿选择性提取,有助于后续制备高品质铝酸锂产品。
本发明涉及一种锂二次电池用负极,其包含:锂金属层;和碳基薄膜层,其中多个多孔碳材料沿着一个水平方向排列;和包含所述锂二次电池用负极的锂二次电池。
本发明提供一种电极密度高且能够提高锂二次电池的倍率特性的锂磷系复合氧化物碳复合体。一种锂磷系复合氧化物碳复合体,其特征在于,其为通式(1):LiMPO4(1)(式中,M表示选自Fe、Mn、Co、Ni及V组成的组中的一种以上的金属元素)所表示的锂磷系复合氧化物颗粒介由导电性碳材料聚集而成的聚集体,该聚集体的平均粒径为1~30μm,该聚集体的振实密度为0.8g/cm3以上。
本发明的目的在于得到安全性高、且具有高能量密度、可由放电电压推定电池的残存容量的锂离子电池。本发明为以重量比x:y:z(0.10≤x≤0.60、0.10≤y≤0.70、0.10≤z≤0.40、x+y+z=1)含有磷酸铁锂颗粒、磷酸锰铁锂颗粒和层状氧化物系活性物质颗粒的锂离子二次电池用正极电极。本发明为在由放电电压和放电容量形成的放电曲线中,在2个平坦区域之间具有1个非平坦区域,非平坦区域的宽度换算为SOC为20%以上的锂离子二次电池。
本发明涉及锂电池技术领域,具体涉及一种锂电池负极材料、锂电池负极、锂电池及它们的制备方法,所述锂电池负极材料,包括负极活性材料、导电剂和粘结剂;其中,所述负极活性材料包括生焦粉碎超高温石墨化材料,所述生焦粉碎超高温石墨化材料的粒径分布D50为2~10μm,其振实密度为1.2~2g/cm3,其比表面积为0.5~1.5m2/g。本发明采用生焦粉碎超高温石墨化材料作为负极活性材料,通过提高生焦粉碎超高温石墨化材料的压实密度和振实密度,降低其层间距,提高空间利用率,达到降低内阻的作用,从而提高负极材料的低温充放电性能和循环性能。
在使用锂金属以增加锂二次电池的容量时,由于枝晶等而降低了充放电的可逆性。根据本发明的其上沉积有LiF的锂金属对于可逆性的降低具有高稳定性,由此具有高的充放电可逆性。另外,在沉积有LiF时,优点在于作为现有技术负极的锂金属本身不被消耗,锂金属电极的形状本身不会大幅改变。
本发明公开了特别适合于磷酸铁锂制备的磷酸铁前驱体的制备方法及其制备的磷酸铁,以及磷酸铁锂的制备方法和由其制备的磷酸铁锂;磷酸铁的制备方法包括以下步骤:向含有硫酸和有机酸的水溶液中加入还原铁粉,于60‑90℃反应5‑10小时,反应完成后高磁过滤,得到硫酸亚铁水溶液;向硫酸亚铁水溶液中,滴加由过硫酸铵、磷酸铵、纳米粒子控制剂组成的混合液,于60‑80℃、pH值3以下进行沉淀,搅拌混合反应5‑8小时,反应结束后去磁过滤,压成滤饼,漂洗、喷雾烘干、制粉,得到磷酸铁产品。本发明通过对磷酸铁锂制备工艺和原料、磷酸铁的制备工艺和原料以及最初原料硫酸亚铁的成分进行改进,而使最终得到的磷酸铁锂的导电性能、振实密度和性能稳定性得到充足提高。
一种锂离子电池材料磷酸亚铁锂的制备方法,所述的方法对磷酸亚铁锂高温固相法生产过程中产生的尾气进行高效净化处理,取得了良好的技术效果和可观的经济、环境效益。本发明使用氨气净化塔对尾气中的氨气进行处理,最终得到含有硫酸铵的化肥用于出售,有效利用了焙烧过程中的氨成分,降低了规模化生产的成本,既保护了环境又取得了可观的经济效益。本发明使用氮气与高温尾气进行换热,在烧结前事先预热了氮气,有效的利用了尾气热量,提高了反应速率以及产品纯度,节省了能耗,进一步降低了能耗。本发明使用一氧化碳吸附剂以除去尾气中一氧化碳,进一步减少了尾气中有害气体,环境效益明显。
本发明涉及用于锂电池的电解液,包括所述电解液的锂电池以及运行所述锂电池的方法,所述锂电池包括具有镍-钴-锰类活性材料的正极,所述电解液包括非水有机溶剂和锂盐,所述非水有机溶剂包括碳酸亚乙酯和碳酸二甲酯。
本发明公开了一种锰酸锂包覆高镍镍钴锰酸锂锂离子电池正极材料及其制备方法,该方法包括步骤:步骤S1,在氢氧化钠水溶液中加入高镍镍钴锰酸锂前驱体,在磁力搅拌机中进行搅拌,得到均匀的碱性前驱体分散液;步骤S2,在搅拌条件下,将含有锰离子的水溶液缓慢滴加到碱性前驱体分散液中,形成氧化锰包覆的高镍镍钴锰酸锂前驱体分散液;步骤S3,对分散液离心和真空干燥之后,加入氢氧化锂作为反应物,采用球磨法充分混合均匀,在氧气的氛围下高温反应制备得到锰酸锂包覆镍钴锰酸锂锂离子电池正极材料。采用本发明制备的复合材料通过电池组装和电化学性能测试证实该工艺在保持较高可逆容量的情况下,提高了循环稳定性。
本发明涉及一种从锂矿的一次提锂溶液中提取锂的方法,(a)将无机盐与一次提锂溶液混合,除去沉淀得到二次提锂溶液;(b)将二次提锂溶液进行纳滤处理,将一价阳离子盐溶液与多价阳离子盐溶液进行分离;(c)从一价阳离子盐溶液中提取锂盐。其他一价和多价盐分离液可以经浓缩结晶或沉淀得到相应盐类。本发明提供了一种从锂矿中经济、有效地回收锂的新技术,原料资源贮量丰富,工艺流程简单合理、操作可靠、能耗低,达到降低成本、降低耗能的目的。
本发明涉及一种固态聚合物锂离子电池和锂离子电池组及其制作方法,属于固态聚合物锂离子电池领域。本发明提供的一种固态聚合物锂离子电池,由正极端组合件、极组、塑料壳体、负极端组合件组成,所述正极端组合件、所述负极端组合件分别与所述壳体熔焊在一起,所述极组设置在所述正极端组合件、所述负极端组合件和所述壳体围成的空间内,所述极组的一端与所述正极端组合件相连,所述极组的另一端与所述负极端组合件相连。本发明还提供一种固态聚合物锂离子电池组及一种固态聚合物锂离子电池的制作方法。本发明简化了电池制造工艺,提高了电池的安全性,并大大降低了电池的制造成本。
本发明属于锂离子电池阴极材料技术领域,具体涉及一种富锂铁镍锰基材料及其制备方法和应用、一种锂离子电池阴极材料、一种锂离子电池。本发明提供的富锂铁镍锰基材料,锂与三价铁、二价镍和四价锰的有效结合,表现出很高的充放电比容量、库伦效率,且充放电比容量循环稳定性高。
本发明提供了一种从废旧磷酸铁锂电池中回收锂的方法,以及回收锂和磷酸铁的方法。本发明提供的回收锂的方法中,将废旧磷酸铁锂电池经前处理后,获得正负极粉,再将正负极粉与水、浓硫酸及氨水反应,形成含锂溶液和铁磷渣,经固液分离将二者分离,获得一次浸出液和含碳铁磷渣;将正负极粉再与一次浸出液、浓硫酸及氨水反应,经固液分离,获得二次浸出液和含碳铁磷渣;所得二次浸出液经加碱调节pH后、固液分离除去铁、铝等杂质,得到除杂液,所得除杂液直接与碳酸钠反应,形成碳酸锂产品。本发明提供的上述方法能够简化回收过程,提高含锂溶液中的锂浓度,无需蒸发浓缩便可沉锂生成碳酸锂,回收率较高;且碳酸锂产品符合电池用碳酸锂行业标准。
本发明属于锂离子电池材料回收利用技术领域,公开了一种锰酸锂电池废料制备锂离子筛的方法及其锂离子筛。本发明方法通过对锰酸锂电池废料进行处理得到粉料,再加酸酸化得到含锂溶液和锂离子筛。本发明还提供上述方法制备得到的锂离子筛,其吸附容量达25.0mg/g以上,首次合成锰损失率为5~10%,后期单次循环溶损率≤1.50%,性能优异。本发明方法采用酸浸法对热处理及活化后的锰酸锂电池废料进行处理,锂的回收率可达79.68%以上,所制得的锂离子筛吸附容量大,在回收锂资源的同时实现锂离子筛的制备,无环境污染,经济效益可观。
本发明公开一种锆酸锂包覆锂离子电池富锂锰基层状氧化物正极材料的制备方法,其包括以下步骤:草酸盐前驱体的制备;氧化物包覆草酸盐前驱体的制备;锆酸锂包覆富锂锰基层状氧化物正极材料的制备。本发明的有益之处在于:(1)能够改善富锂锰基层状氧化物正极材料的倍率性能、循环稳定性能,并且能够抑制富锂锰基层状氧化物正极材料的电压衰减;(2)合成工艺简单,生产效率高,适宜规模化生产;(3)具有反应物所需原料易得、无毒、成本低廉,生产过程无需特殊防护,反应条件容易控制,所得到的产物具有产量大、结果重复性好等优点。
本发明提供锂离子二次电池负极用浆料组合物、锂离子二次电池用负极以及锂离子二次电池,所述锂离子二次电池负极用浆料组合物可以提供:在低温下的锂离子吸纳性优异、且可以提高负极板的密合强度、寿命特性优异的锂离子二次电池。本发明涉及的锂离子二次电池负极用浆料组合物含有负极活性物质、增稠剂、由聚合物粒子构成的粘合剂、以及水,所述负极活性物质包含碳材料,所述碳材料的石墨层间距离(X射线衍射法测定的(002)面的面间隔(d值))为0.340~0.370nm,所述增稠剂是聚合度为1400~3000的高分子,所述聚合物粒子是由包含1~10质量%单羧酸单体的单体组合物聚合得到的物质,并且,通过电导率滴定测定,每1g所述聚合物粒子的聚合物粒子表面的酸基量为0.1~1.0mmol。
本发明公开了一种锂电隔膜的涂覆方法及锂电隔膜、锂电池,所述涂覆方法包括以下步骤:步骤1,制备涂层浆料;步骤2,将所述涂层浆料均匀涂覆于基膜单侧表面得到涂覆隔膜;步骤3,在常温25‑30℃下,将所述涂覆隔膜进行6~8次萃取后,再进行3‑5次水洗,其中:萃取液为水与NMP(N‑甲基吡咯烷酮)的混合液,相邻的两次萃取中,后一次萃取比前一次萃取所用的萃取液中NMP的浓度小2‑22wt%;步骤4,萃取结束后将涂覆隔膜于30‑65℃下干燥。本发明得到的锂电隔膜热稳定良好。
本发明提供一种预锂化后的锂离子二次电池负极材料及机械预锂化方法,机械预锂化方法包括:步骤1,准备预定厚度的片状的电池负极极片;步骤2,将预定厚度的锂带与片状的电池负极材料置于干燥环境中并将该锂带与片状的负极材料平整地贴合在一起得到贴合材料;步骤3,通过压力设备对步骤二中得到的贴合材料进行压制得到预锂化后的二次电池负极材料。
本实用新型公开一种锂离子电池组模组盒、锂离子电池组及锂离子电池包,其中,所述锂离子电池组模组盒包括盒体,所述盒体具有上端开口的容纳腔,所述容纳腔用以容置锂离子电池,所述盒体包括用以围设形成所述容纳腔的多个围板结构,至少一所述围板结构为换热结构,所述换热结构的内部具有换热通道,所述换热通道内流通有换热液,所述换热结构用以通过所述换热液将所述容纳腔空间的热量交换至所述盒体的外侧。减少了热量传递的介质,实现了热量的无缝传递,提高热交换的效率,方便对锂离子电池组进行热管理。
本发明涉及一种聚丙烯酸锂制备方法及聚丙烯酸锂与锂盐混合制备固体电解质膜方法,聚丙烯酸锂制备步骤为:将丙烯酸和氢氧化锂按照摩尔比2∶1混合,室温下在醇溶液中反应2-10小时后,用丙酮沉淀即得丙烯酸锂;再将丙烯酸锂用醇溶解后,倒入反应釜中,50-80℃下通氮气搅拌,滴加偶氮二异丁腈及沉淀剂的溶液,反应2-10小时后,将产物倒入烧杯,抽滤,用醇洗涤滤饼,干燥,即得纳米级聚丙烯酸锂粉末。聚丙烯酸锂与锂盐混合制备固体电解质步骤为,先将锂盐在200℃下真空干燥48小时,脱去结晶水,然后在氩气保护手套箱中将锂盐与一定量的聚丙烯酸锂混合,充分研磨,在适当温度下,使样品熔化,用不锈钢电极压片,即得到固体电解质膜。
本发明涉及一种具有准分子紫外灯辐照修饰ZnO的腈纶基锂锂硫电池夹层材料及其制备方法,属于储能体系器件材料技术领域。具有准分子紫外灯辐照修饰ZnO的腈纶基锂锂硫电池夹层材料的制备方法方法包括以下步骤:腈纶纱线溶解在DMF中,充分搅拌,静电纺丝,高温碳化,得到碳纤维膜,再通过在锌盐的水溶液中进行准分子紫外灯辐照,干燥退火后得到修饰有ZnO的碳纳米纤维薄膜。本发明制备材料来源环保,流程短且绿色安全,高效清洁。所制备的修饰有ZnO的碳纳米纤维薄膜做为锂硫电池的夹层,该夹层不仅可以物理阻挡多硫化物且能通过高效有力的化学吸附固定多硫化物,使得活性物质能高效利用,从而提高锂硫电池的电化学性能。
本发明提供了用于锂金属或无阳极可充电电池组电池的包含二氟(草酸)硼酸锂和四氟硼酸锂以及溶剂组分的电解质溶液,以及使用该电解质溶液提高电池组电池容量保持率的方法。还提供了包括锂金属或无阳极电池组电池和电解质溶液的可充电电池组系统,该电解质溶液包含二氟(草酸)硼酸锂和四氟硼酸锂以及溶剂组分。本发明所述系统表现出提高的容量保持率。
本实用新型提出了一种新型的锂电池外壳、锂离子电池和锂电池模组,其中,新型的锂电池外壳包括壳体以及安装在壳体上端的盖板,壳体的横断面形状大致呈椭圆形,盖板的形状与壳体的横断面形状相匹配,盖板上设有正极柱和负极柱,正极柱上设有用于表示正极极性的第一标识,负极柱上设有用于表示负极极性的第二标识。本实用新型可减小电池内部空间,提高单体电池体积能量密度,而且可方便人员快速准确的辨识正极和负极,简单高效,同时也避免正负极接错造成的电池短路或者火灾,从而避免锂离子电池发生热失控。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!