本公开涉及一种锂离子电池的电极及锂离子电池,所述电极包括集流体和层叠于所述集流体表面的活性物质层,所述活性物质层中含有电极活性物质和第一锂盐,所述第一锂盐占所述活性物质层的含量不超过10重量%,所述活性物质层具有所述第一锂盐的浓度沿远离所述集流体的方向减小的浓度梯度。本公开在电极集流体上设置活性材料层,并且该活性材料层中第一锂盐浓度沿远离集流体的方向梯度减小,含有该电极的锂离子电池、尤其是锂离子动力电池能够在使用过程中及时补充损耗的锂盐,保持电解液中锂离子电导率的恒定,从而降低锂离子电池在整个电池寿命周期内的功率衰减。
本发明提供了锂负极极片及其制备方法和锂电池。所述锂负极极片包括:锂负极;保护层,所述保护层包括碳化锂层,所述碳化锂层设置在所述锂负极的一个表面上。由此,碳化锂作为保护层设置在锂负极的表面上,能够有效防止保护层的脱落、断裂等问题,进而保证保护层的长期有效,且有效提升电池的库伦效率以及长期循环中电池的容量保持率;碳化锂层还可以抑制锂枝晶的生长,有效防止由于锂枝晶的产生导致的电池短路。
本发明涉及一种水热法制备磷酸亚铁锂和亚铁酸锂复合电极材料的方法,该方法用碳源、锂源、磷源和铁源在水热釜中,以非氧化性气体作为保护气体并加压至0.1~1.5MPa,在150~250℃温度下反应1~12小时,即得到磷酸亚铁锂和亚铁酸锂复合材料,其中碳材料占复合材料质量的0.5~5%。本发明的制备方法-水热法可以低温得到目标产品、能耗低,并且本发明的制备方法工艺简单、成本低,采用本发明的制备方法制备出的复合电极材料覆碳含量小、振实密度高、比表面积10~30m2/g、比容量高、易于电极成型,该复合电极材料可用于混合超级电容器的电极材料、锂离子电池的电极材料等。
本发明公开了一种Si负极和富锂富锰正极的高比能量二次锂离子电池的制造方法,富锂富锰材料分子式为xLi2MnO3·(1-x)LiMO2,其中M=Ni,Co,Mn,全电池负极由纳米Si材料与Super?p炭黑和海藻酸钠按比例制备而成,正极由富锂富锰材料与PTFE和乙炔黑混合制成,而富锂富锰材料则由金属盐溶液与NaOH溶液共沉淀制备而成,使用纳米Si材料和富锂富锰材料组装出来的全电池具有较高的容量与比能量,平均电压高,无污染。
本发明提供一种锂离子电池负极活性材料,包括二氧化锰纳米管。本发明提供一种锂离子电池负极活性材料的制备方法,其包括以下步骤:将高锰酸钾、氯化氢及表面活性剂聚乙烯吡咯烷酮在水中混合形成混合液;以及将该混合液在水热釜中进行水热反应,反应温度为120℃~180℃,生成二氧化锰纳米管。本发明提供一种锂离子电池,该锂离子电池的负极活性材料包括二氧化锰纳米管。
从医药含锂废液中回收高纯度依法韦伦和氯化锂的方法,其特征在于:向医药含锂废液中加入萃取剂,收集水相和有机相;将水相加热浓缩;再加入萃取剂萃取分液,收集水相和有机相;加入树脂,收集水相作为母液;向母液中加入碱和Na2CO3,调节pH,固液分离后得清液;用盐酸回调清液pH,煮沸;再用LiOH调清液的pH至6.0~8.0,得净化液;将净化液蒸发浓缩,得到LiCl饱和溶液,加入有机溶剂,晶体析出后得LiCl粗品;将粗品用有机溶剂溶解,固液分离,喷雾干燥得LiCl产品;将有机相混合后蒸干,薄层层析法分离各种有机物,得依法韦伦。本发明通过多步骤除杂回收工艺,实现了高纯度氯化锂和依法韦伦的回收,方法简单可行。
本发明公开了一种改性锂离子电池正极材料及其制备方法以及使用改性锂离子电池正极材料的电化学储能装置,其中改性锂离子电池正极材料包括正极材料内核及包覆于正极材料内核表面的复合包覆层,所述复合包覆层由含有Li0.5La0.5TiO3的第一包覆层和含有LiTaO3的第二包覆层组成,所述正极材料内核结构式为Li1±εNixCoyMnzM1‑x‑y‑zO2,其中,‑0.1<ε<0.1,0<x,y,z<1,M为Mg、Sr、Ba、Al、In、Ti、V、Mn、Co、Ni、Y、Zr、Nb、Mo、W、La、Ce、Nd、Sm等元素中的一种。本发明的改性锂离子电池正极材料具有较好的结构稳定性,当其应用于电化学储能装置后能显著改善电化学储能装置的循环性能,同时提升高倍率下的动力学性能。
本发明公开了一种利用垃圾焚烧飞灰回收磷酸铁锂阴极材料中锂的方法,该方法充分利用垃圾焚烧飞灰含氯高的特点,利用垃圾焚烧飞灰中氯的电解产物与磷酸铁锂阴极材料粉末反应,促进磷酸铁锂阴极材料粉末中锂离子的溶出,并通过第二电解槽实现锂与氯、磷、铁的高效分离。本发明工艺简单,可操作性强,最高可回收磷酸铁锂阴极材料粉末中96%以上的锂。
本发明公开了由类正方体组成的球形富锂前驱体及其制成的富锂正极材料和产品的制备方法,实施步骤如下:1)溶剂热法加热反应制备由类正方体组成的特殊球形富锂前驱体;2)预烧后的富锂前驱体与碳酸锂混合,高温烧结反应制备球形富锂正极材料。溶剂中加入PVP,为模板剂以便于形成特殊形貌;通过采用尿素作为沉淀剂,既可以缓慢调节反应溶液pH值,又可以水解得到碳酸根离子,与金属离子反应,制备出由类正方体组成的特殊球形富锂前驱体,提高材料的结构稳定性。本发明高效、简单,且所得球形富锂正极材料,具有良好的结构稳定性和电化学性能。
本发明公开了一种锂电解槽上料装置及使用其的锂电解槽,包括支撑部、活动部和储料部,支撑部固定地连接在锂电解槽上,活动部套在支撑部内,并与储料部通过铰链连接在一起;储料部内放置需要添加至锂电解槽内的电解质;活动部和储料部均为槽式;活动部沿铰链旋转,实现电解锂的电解质的增添;储料部内部靠近活动部位置处还设置有挡板,挡板通过竖轴连接在储料部底部上,并与储料部的两个内壁相切,并挡板与储料部相切位置处为圆柱形,竖轴带动挡板在储料部内转动;本发明的上料装置及电解槽,提高了氯化锂等锂化物电解得到锂时的效率,以及减少了其对人眼造成的伤害,提高了其操作过程中的安全性能、便捷性及其电解效率。
本发明公开了一种锂离子电池正极材料磷酸铁锂/还原氧化石墨烯的制备方法,将铁源、磷酸源加入去离子水中,调至合适的pH,加入氧化石墨烯搅拌均匀,进行水热反应,冷却后离心、洗涤得花状结构的磷酸铁/氧化石墨烯,配入锂源,在还原性气氛下进行热处理,冷却后得到花状结构的磷酸铁锂/还原氧化石墨烯。本发明的方法通过提高磷酸铁锂的电子电导率和锂离子传输速率,改善了其循环性能和倍率性能。
本发明公开了一种预锂化膜的预锂化量检测方法,包括:制备负极极片、预锂化膜和铝箔;铝箔的面积和预锂化膜面积之比为0.5‑1;负极极片的面积和预锂化膜面积之比为0.5‑1;所述预锂化膜包括1um‑50um的基膜和涂布在所述基膜之上的0.02um‑100um的预锂化层;将制备好的负极极片、预锂化膜和铝箔装成扣式电池;其中,所述预锂化层面向所述铝箔一侧进行装配;将扣式电池进行静止,静止时间8‑32小时;对扣式电池在1uA/cm2‑1mA/cm2的放电电流密度下进行放电处理,放电截止电压在4.2V‑4.7V之间;读取放电容量,计算所述预锂化膜的预锂化量。
本发明公开了一种锂电池用非水电解液及锂离子电池。本发明的锂电池用非水电解液,包括电解质盐、非水溶剂和添加剂,所述非水溶剂为吗啉类化合物。本发明的锂电池用非水电解液,采用吗啉类化合物为溶剂,其电化学窗口更宽,使之对高镍正极材料稳定性更强,具有优异的抗还原能力,大幅提升了使用高硅负极电池的存储性能和循环能力。
本发明涉及电池电解液技术领域,公开了一种锂离子电池阻燃电解液,包括锂盐、固态电解质界面膜稳定剂、过充保护剂、成膜添加剂、阻燃添加剂、非水有机溶剂;锂盐为占整个电解液质量分数的10%~15%;有机溶剂为碳酸酯类有机溶剂和/或羧酸酯类有机溶剂与四氟乙基甲基醚按照一定比例的质量比混合;成膜添加剂占整个电解液质量分数的3%;阻燃添加剂为环三磷腈化合物及其衍生物,阻燃添加剂添加量占整个电解液质量分数的5%,过充保护剂为二苯醚。本发明通过上述添加剂有限协同作用,起到电解液阻燃的技术效果,提高锂电池安全性能。
本发明公开一种锂空气电池及其正极的制备方法,所述方法首先根据使用需要选取光电半导体材料,并制备所述半导体材料,其次通过水热法、刮涂法或者喷涂法将制得的半导体材料覆盖在碳布表面,使其形成完整的锂空气电池正极复合材料;该储能设备所储存的能量将达到300Wh kg‑1,且电池结构能极大的缩小了装置的体积,能有效的适应世界各地的地形地貌,便于分布在不同的区域使用。另一方面,该装置由于省略了通过外电路存储光伏发电的过程,能有效降低了电能的损耗,保证电池具有高效利用太阳能的能力。
本发明公开了一种锂离子电池电解液,包括溶剂、锂盐及添加剂,所述的添加剂是由氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酰基化合物及磺酸酯类化合物组成的,以所述锂离子电池电解液的总质量100%计,所述添加剂中各组分的投料质量分别为:氟代碳酸乙烯酯0.5%~5%、碳酸亚乙烯酯0.5%~3%、亚硫酰基化合物0.1%~1%、磺酸酯类化合物0.1%~1%,所述的溶剂是由氟代脂溶剂及其他有机溶剂按1~3:1的投料体积混合而成的,所述的其他有机溶剂为选自碳酸乙烯酯、碳酸丙烯酯、氯代碳酸乙烯酯中的一种或多种的组合。本发明的锂离子电池,使用安全,其电容量高、比能量大、循环寿命长、高温产气少,且在4.4V以上的高压体系下的首次效率、循环性能及高温储存性能均有所提高。
本发明涉及一种用于硅负极锂电池的电解液,由锂盐、溶剂和添加剂组成,添加剂包括添加剂M,其中,锂盐的摩尔浓度为0.001~2摩尔/升,添加剂M占电解液的质量百分比为0.1~10%;添加剂M的结构式为或其中,R1、R2、R3、R4、R5独立为烷氧基或卤代烷氧基,R6为烷基或者卤代烷基,卤代的卤素为F、Cl、Br中的任意一种,卤代为部分取代或者全取代;m、n独立为1~10的整数,x为1~10的整数。含聚醚链的有机硅异氰酸化合物能有效提高硅负极锂电池的充放电性能,减少副反应的发生,从而减少电池胀气,提高电池的循环寿命。
本实用新型提供了一种锂电池负极极片补锂装置,包括一对转移辊、两个压延机构和两个保护膜收放机构,其中两个转移辊之间形成规定的、允许负极极片通过的覆合间隙,压延机构和转移辊一一对应,压延辊与转移辊之间形成规定的压延间隙,以将锂带压延并贴覆在转移辊上,保护膜收放机构和压延辊一一对应,行经压延间隙的保护膜经由保护膜放卷机构形成放卷和收卷。本实用新型所述的锂电池负极极片补锂装置,通过设置保护膜收放机构,可便于保护膜的放卷和收卷,由于保护膜被收卷后,经过清洗烘干后,可以重复利用,节约了补锂成本,另外,由于压延辊和转移辊间形成压延间隙,压延后的锂带贴覆在转移辊上,未使用载体膜,进一步的降低了补锂成本。
本实用新型公开了一种锂离子蓄电池组用外壳及锂离子蓄电池组,其属于航天器用锂离子电池技术领域,锂离子蓄电池组用外壳包括底板和与所述底板垂直连接的前侧板、后侧板、左侧板及右侧板,所述底板、所述前侧板、所述后侧板、所述左侧板及所述右侧板围设形成容置空间,前侧板、所述后侧板、所述左侧板及所述右侧板均开设有减重孔,且前侧板、所述后侧板、所述左侧板及所述右侧板均设有减重凹槽;所述锂离子蓄电池组用外壳还包括加强筋,每一所述减重孔内均设有所述加强筋。一种锂离子蓄电池组包括蓄电池模组,还包括上述的锂离子蓄电池组用外壳,所述蓄电池模组设于所述容置空间。本实用新型使得锂离子蓄电池组的重量降低。
本发明公开了一种改性磷酸锰铁锂正极材料的制备方法,包括:a.将微米级的磷酸锰铁锂、分散剂进行纳米化,得到纳米级的磷酸锰铁锂浆料;将微米级的固态电解质进行纳米化,得到纳米级固态电解质浆料;b.将磷酸锰铁锂浆料和固态电解质浆料烘干,再混合均匀,得到复合材料;c.将复合材料在惰性气氛下进行煅烧,得到改性磷酸锰铁锂正极材料;其中,分散剂为聚乙烯吡咯烷酮、聚乙二醇、聚乙烯醇中的一种或多种,其添加量为磷酸锰铁锂的1wt%~5wt%;改性磷酸锰铁锂正极材料中固态电解质的含量为0.3wt%~3wt%。本发明的改性磷酸锰铁锂正极材料,能够改善磷酸锰铁锂电子和离子电导率低的问题,更好的构筑电子和离子通道,提高循环性能。
本发明提供了一种富锂锰基层状锂电池正极材料的制备方法,步骤如下:步骤1、配置金属离子溶液;步骤2、利用步骤1的金属离子溶液配置金属离子、乙二醇、柠檬酸混合溶液;步骤3、制备颗粒状的Li1.17Ni0.20Co0.05Mn0.58O2前驱体;步骤4、制备层状晶体结构Li1.17Ni0.20Co0.05Mn0.58O2;步骤5、制备碳包覆的Li1.17Ni0.20Co0.05Mn0.58O2材料;步骤6、制备富锂锰基层状锂电池正极材料。本发明的正极材料与传统锂电池正极材料相比,具有以下优点:1、其能量比大于钴酸锂,并且使用钴材料极少,其成本得到极大降低。
本发明涉及一种石墨烯复合的锂离子电池正极材料磷酸铁锂及其制备方法,这种磷酸铁锂和石墨烯的复合材料由化学键合的界面连接,同时提供以原位共生反应方式制备锂离子电池正极材料磷酸铁锂的方法,所得正极材料的振实密度高、倍率性能好,适合用作于锂离子动力电池正极材料。
本实用新型公开了一种用于锂电池组的硅胶加热片及锂电池组,属于车辆电池领域。所述硅胶加热片放置于所述锂电池组的相邻的两组锂电池包之间,包括用于产生热量的发热元件;上层导热硅胶片,其一侧贴合于所述发热元件的上侧,另一侧设有粘接物,通过所述粘接物可将所述硅胶加热片粘接于所述相邻的两组锂电池包中的一组锂电池包的侧面;下层导热硅胶片,其一侧贴合于所述发热元件的下侧,另一侧与所述相邻的两组锂电池包中的另一组锂电池包的侧面相接触;和温控元件,与所述发热元件相连,用于测量所述发热元件的温度。本实用新型能使得所述锂电池组处于适宜的工作温度,有效改善锂电池低温时的充放电性能,并且结构简单,使用方便。
本发明提供一种锂离子电池负极片及其制备方法和锂离子电池,所述锂离子电池负极片包括负极集流体和涂覆在所述负极集流体表面的负极功能层,所述负极功能层包括负极活性材料、导电剂和粘结剂,以负极功能层的质量为100%计,所述粘结剂的含量为1.5%‑3.5%。锂离子电池负极片的制备方法包括以下步骤:将负极活性材料、导电剂、粘结剂和溶剂混合,得到负极浆料,而后将负极浆料涂覆于负极集流体上,干燥,辊压,得到所述锂离子电池负极片。本发明的锂离子电池负极片可以提高锂离子电池的倍率性能和循环性能。
本发明涉及一种锂离子电池正极浆料及其制备方法、正极片、锂离子电池,其中,正极浆料包括活性物质、粘结剂、导电剂、溶剂以及添加剂聚丙烯酸和纳米硅酸镁锂复配物;本发明先将纳米硅酸镁锂与聚丙烯酸制备成纳米硅酸镁锂与聚丙烯复配物,后与活性物质、粘结剂、导电剂、溶剂制备得到正极浆料。本发明正极浆料中加入聚丙烯酸和纳米硅酸镁锂复配物,大大提高了锂离子电池正极浆料的稳定性,保持浆料高固含的同时保持其流动性,对活性物质的适应性以及对水分的耐受性强,同时有效抑制正极片浸泡电解液后的溶胀,保证电极导电网络的稳定性。
本发明公开了一种制备磷酸锰铁锂‑碳复合材料的方法和磷酸锰铁锂‑碳复合材料。所述方法包括如下步骤:(1)分别制备可溶性含锰磷酸盐溶液A、可溶性有机铁盐溶液B、可溶性有机锰盐溶液C和可溶性有机锂盐溶液D;(2)将所述溶液A、B、C、D按预定的元素摩尔比进行混合,获得前体溶液;(3)将步骤(2)获得的前体溶液干燥造粒,获得磷酸锰铁锂前体粉料;(4)将步骤(3)获得的前体粉料在保护气氛下烧结,获得烧结后的物料;(5)将步骤(4)获得的物料进行粉碎细化、真空包装,获得磷酸锰铁锂‑碳复合材料。本发明的方法简单易行,适合大规模工业化生产。所得材料可用作锂离子电池正极活性材料,电阻率低,电化学性能优。
本发明涉及一种锂电池用高循环储锂型炭材料的制备方法,属于锂电池材料技术领域。本发明技术方案采用大豆秸秆牛骨作为原料,由于大豆秸秆和牛骨中含有大量的磷、氮等元素,提供更多的活性位,可以提高锂离子电池的比容量,由于生物质材料中氮原子与碳原子主要存在两种成键形态,类吡啶碳氮和类石墨碳氮,类石墨碳氮结构中原子置换了碳基骨架中的C原子,杂原子的未成对电子与碳骨架的π电子云产生共轭,从而增强了碳骨架电子云的密度,有利于提高碳骨架的导电性能,而类吡啶碳氮结构在碳分子网络中形成大量缺陷,增加体系边缘面的比例,有利于增强碳骨架与电解质溶液的相互作用,利于其电化学性能的提升,有效改善锂电池中炭材料的储锂性能。
本发明揭示了一种钛酸锂锂电池负极材料,所述负极材料中Li元素的质量百分比在6.05~6.25%范围内,Ti元素的质量百分比在50.66~52.16%范围内,O元素的质量百分比在40.79~41.79%范围内,且负极材料的振实密度Tap≥0.65~1.0g/cm3,压实密度≥1.9g/cm3。该材料采用普通锐钛型二氧化钛进行制备,方法达到了国内高纯电子级二氧化钛为原料合成的高纯钛酸锂锂电池负极材料水平,降低全电池生产成本。本发明的钛酸锂锂电池负极材料制备方法简单,适合大规模工业化生产。
本发明涉及一种高电压锂电池正极材料镍钴锰酸锂的制备方法。它包括以下步骤:将镍盐、钴盐、锰盐加入反应釜;加入氢氧化钠或氢氧化钾和氨水的混合溶液,反应生成镍钴锰氢氧化物沉淀;将沉淀洗涤、压滤、烘干,得到氢氧化镍钴锰;将氢氧化镍钴锰和锂盐球磨,混合均匀;将混合产物烧结得到镍钴锰酸锂;将醋酸镁和醋酸锆加入去离子水中,配制成混合溶液;将混合溶液加入镍钴锰酸锂的水相体系中,烘干;将烘干后的产物高温处理得到最终产物。本发明有效提高了锂电池正极材料的容量性能和循环性能。
本发明涉及了锂电池用钛酸锂-氧化镍纳米纤维复合材料的制备方法,先将高分子聚合物载体和表面活性剂溶于溶剂中,搅拌后得载体溶液;再将锂源、镍源分别加入水中,恒温搅拌后,向其中加入双氧水,搅拌均匀后加入钛源并用氨水调节pH,恒温搅拌后将所得溶液加入到载体溶液中,搅拌至形成前驱体液;然后将前驱体液静电纺丝,获得纳米纤维前驱体;最后将纳米纤维前驱体进行预分解和烧结处理后,放入液氮或水中淬火,即得到锂离子电池用钛酸锂-氧化镍纳米纤维复合材料。本发明所得纳米复合纤维材料分布均匀、粒径可控、电化学性能优异,可广泛应用于锂离子电池领域。
中冶有色为您提供最新的江苏有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!