本发明公开的一种降低镍钴铝酸锂正极材料表面残锂的方法,通过配置专用洗涤液,通过超声搅拌洗涤以及干燥等步骤,对表面残锂严重的镍钴铝酸锂正极材料进行洗涤,从而大幅度降低镍钴铝酸锂正极材料的表面残锂,是使用本发明方法,清洗后的镍钴铝酸锂正极材料,其表面残锂程度低于0.05%,大幅度改善了镍钴铝酸锂正极材料的电化学性能,从而提高了锂电池的能量密度,促进了电动汽车行业的发展。
本发明涉及铌改性富锂锰基材料的制备方法、正极材料及锂离子电池,其中,铌改性富锂锰基材料的制备方法包括以下步骤:获取镍钴锰前驱体;将所述镍钴锰前驱体与第一部分锂盐混合并预烧,冷却后再与第二部分锂盐以及含铌化合物在真空状态下混合,获得混合物;将所述混合物经过常压高温热处理后得到所述铌改性富锂锰基材料。通过将镍钴锰前驱体与部分锂盐混合后,预烧一段时间,形成一定的层状结构,有利于后续的高温烧结段铌元素的掺杂,经过该种方法制备得到的富锂锰基材料,将其应用于正极材料和锂离子电池中,可明显提升材料的首次效率、循环稳定性并抑制结构氧析出及电压衰减。且该制备方法简单、修饰改性效果明显,具有大规模应用的潜力。
本发明提供了一种钴酸锂‑磷酸铁锂复合正极材料及其制备方法。本发明提供的复合正极材料主要包括钴酸锂和磷酸铁锂两种成分,且呈现钴酸锂为核、磷酸铁锂为壳的核壳结构,其制备步骤主要包括钴酸锂核的制备、磷酸铁锂壳的制备和导电包覆处理,最终获得复合正极活性材料。本发明的正极材料具有核壳结构,其核层发挥高容量、高电压特性,壳层发挥高安全性特性,同时该材料显示出优越的电子和离子导电性,在高功率、高能量密度和高安全性锂电池中具有良好的应用前景。本发明的制备工艺简单易行,易于大规模生产,且成本低廉,环境友好。
本发明公开了一种固态锂离子电池预锂化电极及其制备方法,预锂化电极依次包括集流体、电极层、固体电解质层和锂层,其制备方法包括:将活性物质、导电材料、固体电解质材料、粘结剂、溶剂按比例混合为电极浆料;集流体表面涂覆电极浆料,烘干得电极层;将固体电解质材料、粘结剂、溶剂按比例混合为固体电解质浆料;在电极层表面涂覆固体电解质浆料,烘干得固体电解质层;在固体电解质层上覆合锂层并紧致粘合,得预锂化电极。本发明固体电解质层既能替代传统电池隔膜,提升电池能量密度,也能够在组装电池之前防止因锂与硅之间的接触引发锂化反应而造成的发热起火等安全问题,并大幅解决高容量负极材料首次效率问题,并提高电池安全性能与电性能。
一种锂负极材料、负极片及其制备方法及锂电池,属于电池技术领域。负极片包括基体和锂负极材料,锂负极材料负载于基体,基体包括氧化物固体电解质基体、具有三维导电骨架的碳基基体或金属基体。锂负极材料包括锂金属和掺杂在锂金属中的外源金属,外源金属为还原电位高于锂金属的金属。其能够改善氧化物固态电解质和三维基体框架与锂负极材料界面接触不充分的问题。
本发明涉及一种抑制锂离子化成产气的电解液及锂离子二次电池。为了解决锂离子电池化成产气、高温循环电池容量衰减过快的问题,本发明采用一种锂离子电池电解液,包括非水有机溶剂、锂盐、添加剂,所述添加剂选自含硼酸的锂盐类添加剂、不饱和碳酸酯和/或氟代不饱和碳酸酯、不饱和磺酸酯或酸酐类化合物中的至少一种。本发明的锂离子电池电解液,能够抑制化成产气并且使产气中乙烯的体积百分含量降至53%以下,保证了锂离子电池优异的高温循环性能,极大的提高锂离子电池生产过程的安全性和便捷性。
本发明涉及一种补锂隔膜、制备方法及锂离子电池,补锂隔膜包括隔膜层以及设于隔膜层表面的补锂层,补锂层包括聚合物基材、粘结剂、分散剂、酸碱中和剂、补锂化合物和溶剂,酸碱中和剂为氢氧化锂、碳酸锂中至少一种,补锂化合物为二氟磷酸锂、双(氟磺酰)亚胺锂、双(三氟甲烷磺酰)亚胺锂中至少一种。本发明的补锂隔膜采用氢氧化锂或碳酸锂作为酸碱中和剂,羧甲基纤维素锂作为分散剂,并加入补锂化合物,协同增效,实现补锂效果,操作简单,容易实现,且分散均匀,无任何安全风险,且可实现缓慢持续的补锂。
本发明提供了用于处理锂离子电池的放电溶液、放电装置和用途、使锂离子电池放电的方法。该放电溶液包括:第一金属阳离子,第一金属阳离子包括Ni2+、Co2+或者Mn2+中的至少一种,第一金属阳离子的质量浓度不大于0.05g/L;第二金属阳离子,第二金属阳离子的质量浓度为10g/L~50g/L;NH3·H2O,NH3·H2O的质量浓度为0.01g/L~10g/L;和SO42‑,SO42‑的质量浓度为30g/L~100g/L。该放电溶液具有较高的流动性和适宜的离子导电性,可以使得锂离子电池的放电效率高,无需引入碳源,成本较低,在使锂离子电池放电时操作简单,无需外部制冷控温设备,安全环保无污染,且可以直接由制备锂离子电池正极的前驱体材料过程中的产生的废液制得,无需专门进行溶液的配制,也有利于废液的回收。
本发明公开了一种新型锂‑二氧化碳电池及其正极材料的制备,属于锂‑二氧化碳电池技术领域,本发明采用金属及其合金作为正极材料,即通过在集流体表面原位生长锡、钯、金、铜、铂及其合金;正极催化剂催化二氧化碳还原得到可溶于水的液相产物以及其他有机碳化合物,在其后充电过程中,能在较低的充电电位下,正极催化剂实现对放电产物的分解,负极附近的电子还原锂离子为金属锂。本发明降低锂‑二氧化碳电池的充放电过电位,从而提高库伦效率,降低充电过程中的能量损耗,起到节能减排的效果;并且高效的利用温室气体二氧化碳,并直接转化成电能存储在电池中。
本发明公开了一种锂电池负极材料的制备方法,属于新能源技术领域。本发明制备的锂电池负极材料是由液态锂合金和硅碳复合材料按质量比为1:3~1:20复配而成。利用液态锂合金在硅碳复合材料孔隙中分散填充,采用液态锂合金取代常规负极中嵌入的锂源,可有效避免电池在长期充放电循环过程中锂枝晶的形成,液态锂合金的存在,还可有效缓冲硅碳负极在充放电循环过程中的膨胀。通过控制锂合金中元素的种类,并控制硅碳复合材料的制备工艺,使液态锂合金可有效填充于硅碳复合材料中,形成类似凝胶的结构。
本发明实施例公开了一种锂电池保护系统和锂电池,该锂电池保护系统包括滤波电路、开关电路、温度检测电路和过流保护电路,过流保护电路包括电流产生电路、电压调整电路和比较电路,温度检测电路用于检测锂电池的温度,并根据检测到的温度调节自身的电阻;电压调整电路用于根据电流产生电路输出的电流调整比较电路的第一输入端的电压;比较电路用于根据其第一输入端的电压和第二输入端的电压之间的大小关系,控制开关电路的导通或关断。本发明实施例提供的技术方案通过检测锂电池的温度,能够调整保护系统的过流值,使得过流值随锂电池的温度变化而变化,以满足锂电池在不同温度下的特性需求,进而保证了锂电池工作的稳定性和安全可靠性。
本发明公开了锂电池串联模组充电电压均衡与锂电池电压采样装置,包括多组锂电池串联设置的锂电池模组、电池电压采样组件、充电电压均衡电路及电源管理系统,所述电池电压采样组件包括PCB板、第一排线插座和敷铜走线,所述PCB板设置于锂电池模组一侧,所述第一排线插座设置于PCB板上且通过敷铜走线与锂电池的正极和负极的电压引线并联,所述充电电压均衡电路设置于电池电压采样组件上由NPN晶体管、稳压管和硅基二极管组成,所述电源管理系统上设置有第二排线插座并通过排线与第一排线插座插接。本发明采用充电电压均衡电路自动实现锂电池充电电压的自动均衡,同时有效实现单锂电池电压信号采集,节约大量导线,提高接线精准度。
本发明涉及锂电池加工技术领域,具体涉及一种预锂工艺、预锂装置及叠片工艺、叠片装置。所述预锂工艺包括:S1.在负极片的两面覆合多块间隔布置的锂箔,且位于所述负极片两个面上的锂箔对应分布;S2.沿所述锂箔的间隔区域进行负极片的裁断,形成多个独立的补锂极片;S3.在所述补锂极片的两面覆合隔膜;S4.沿所述锂箔的间隔区域进行隔膜的裁断,形成多个独立的负极单元,所述负极单元适于与正极片进行叠片加工。本发明提供的预锂工艺,在进行模切、叠片等加工之前,便将锂箔、负极片及隔膜覆合成为一体,降低了因锂箔外露导致的后工序加工存在较大的安全风险。
本发明提供离网锂电池反接的断电保护方法,状态采样,控制器采集锂电池侧电位信息;状态判断,根据锂电池侧电位信息判断锂电池状态是否为反接状态,若是,则发出切断信号切断锂电池与控制器间连接电路,若否,则执行锂电池正常充电。本发明还涉及离网锂电池反接的保护电路、离网控制器。本发明采用区别于目前市场上控制器的锂电池状态采样方式,简单、高效,可以轻松辨别锂电池的反接状态,即使在接入太阳能输入的情况下,检测到蓄电池反接,也能迅速反应,切断充电回路,安全、可靠。本发明设计合理,构思巧妙,解决锂电池反接时的离网控制器保护问题,有效提高离网太阳能系统的安全性,避免不必要的损坏,同时降低离网系统接线难度。
本发明涉及一种亚微米复合材料,特别是一种石墨烯/富锂镍钴锰酸锂复合物及其制备方法。制备过程包括以下步骤:采用溶胶凝胶法制备富锂镍钴锰酸锂成品;采用Hummers法制备石墨烯成品;将富锂镍钴锰酸锂成品与石墨烯成品球磨一段时间后,得到亚微米石墨烯/富锂镍钴锰酸锂复合物成品。本发明与现有技术相比其显著优点为:第一,本发明较好地利用了石墨烯具有大比表面积的特点,使所得的亚微米石墨烯/富锂镍钴锰酸锂复合物成品具有良好的电化学性能;第二,使用的化学药品来源丰富,成品的性价比高,适合于工业生产;第三,亚微米石墨烯/富锂镍钴锰酸锂复合物具有超越任何单一石墨烯或富锂镍钴锰酸锂的性能,在锂离子电池储能领域具有广阔的应用前景。
本实用新型公开了一种高电压高锂三元材料锂电池,涉及三元锂电池技术领域,包括锂电池壳体,所述锂电池壳体的顶部一侧固定安装有第一接线端子,且锂电池壳体的顶部另一侧固定安装有第二接线端子,所述锂电池壳体的内部下侧固定连接有电解液池,且锂电池壳体的内部上侧设置有隔板。本实用新型中,通过第一触片、第二触片、第一接线端子、第二接线端子、隔板、密封圈、竖轴和第一弹簧之间的配合使用,实现了在该锂电池非正常工作时的断电功能,防止接电电器受损,且通过圆槽、圆盘、第二弹簧和泄压孔之间的配合使用,实现了自动泄压的功能,起到了防爆的功能,增加了修理过程中的安全性。
本发明公开了一种具有良好循环性能、充放电电压高的锂离子电池及锂离子电池组。本发明的锂离子电池,包括正极片、负极片、隔膜、电解液、壳体、端子,电解液中包括电解质锂盐、有机溶剂、负极成膜添加剂,负极成膜添加剂为N‑芳硫基磺酰衍生物
本发明提供了一种电池壳及其制备方法和锂离子电池及其补锂方法。所述电池壳包括壳体,位于壳体内表面上的补锂层,以及位于补锂层上的保护层。所述方法包括:1)制备含锂浆料,将所述含锂浆料涂布在壳体内表面上,得到补锂层;2)将保护层原料浆料涂布在补锂层上制备保护层,得到所述电池壳。本发明提供的电池壳具有补锂功能,可以通过对补锂层厚度的精确控制实现精确补锂;补锂层上的保护层可以起到封装作用,防止补锂层氧化,使用该电池壳制备锂离子电池可以取消第三电极,提高安全性,并提高了电池的能量密度。
本发明涉及一种含有低极性醚类的混合锂盐的锂硫电池电解液,属于锂硫电池技术领域。该电解液含有混合锂盐、溶解混合锂盐的强极性溶剂和具有稀释作用的低极性溶剂。该电解液能够用于高性能锂硫电池,同时起到稳定锂金属负极和促进硫正极容量发挥的作用。该电解液通过加入不同的锂盐按一定比例混合达到兼顾锂金属负极保护和硫正极容量发挥的特点,并且引入具有稀释作用的低极性溶剂可降低电解液的黏度,提高电导率,降低成本,良好的浸润性,能够大规模应用,具有很高的商业价值。
本发明提供了一种锂离子电池用电解液及其制备方法、锂离子电池,涉及锂离子电池技术领域。具体而言,主要包括锂盐、有机溶剂和添加剂,所述添加剂包括至少一种具有式(Ⅰ)结构的磷酸酯类化合物;;其中,R1、R2或R3的结构中至少含有一个硅烷基。本发明所使用的硅烷磷酸酯类添加剂较易发生氧化还原反应而在正负极成膜,有效地降低正负极界面阻抗并改善锂离子电池在低温环境下的使用性能;通过将硅烷磷酸酯类添加剂与其他种类添加剂以及特定性质的有机溶剂进行搭配,显著提高电池的波谷电压的同时兼顾电池的循环寿命处于较佳状态。
本发明公开了一种利用不合格磷酸铁锂正极材料制备高电化学活性磷酸铁锂正极材料的方法,采用不合格磷酸铁锂正极材料为原料,经水热重结晶法纯化而成。本发明采用水热重结晶法合成工艺,变废为高附加值的高电化学活性的磷酸铁锂正极材料;本发明制备的产品物理性能及电化学性能经多次检测,已达到先进水平;本发明重结晶工艺流程简单、过程控制参数温和易控、适于大规模工业化生产,在锂离子电池领域具有良好的应用前景。
本实用新型公开了一种方便锂电池批量定位的注液用锂电池存放架,包括存放架底座、锂电池推板、存放架主体、推板固定槽、限位块和延伸板,所述锂电池推板的上端开设有推板固定槽,所述锂电池推板的上端开设有方形槽,所述锂电池推板的上端开设有的两端固定有延伸板,所述延伸板的上端固定有方形槽。为了能够保证在锂电池注液制造过程中能够保持锂电池的稳定,存放架主体的高度与锂电池的高度相同也是为了稳固住锂电池。特意设置了液压泵,当所有锂电池注满溶液后,液压泵会稳定的向上推锂电池推板,在锂电池推板上设置间隔均匀、且大小相同的推板固定槽是为了保持锂电池的稳定,在锂电池推板的两侧设置的推板把手是为了方便从存放架中取出锂电池。
本申请提供一种水性高镍正极浆料、锂离子电池正极及其制备方法、锂离子电池和供电设备。水性高镍正极浆料,其原料以质量百分比计算,包括:高镍正极材料90%‑95%、粘结剂1%‑5%、导电剂1%‑3%和稳定调整剂0.1%‑5%。水性高镍正极浆料的制备方法:将包括原料和溶剂在内的物料混合,得到水性高镍正极浆料。锂离子电池正极,包括极板以及设置在极板上的正极材料,正极材料包括水性高镍正极浆料。锂离子电池正极的制备方法:将水性高镍正极浆料涂覆在极板表面,然后进行辊压、干燥得到锂离子电池正极。锂离子电池,包括锂离子电池正极。供电设备,包括锂离子电池。本申请提供的水性高镍正极浆料,稳定性好、成本低。
本发明涉及富锂锰基复合材料的制备方法、正极材料及锂离子电池,其中,富锂锰基复合材料的制备方法包括以下步骤:获取镍钴锰前驱体;将所述镍钴锰前驱体与含硼化合物溶液反应,得到混合前驱体;将所述混合前驱体预烧,冷却后将得到的粉末与锂盐混合,高温烧结后得到所述富锂锰基复合材料。通过对混合前驱体进行预烧,可形成更均匀的包覆层,并促进前驱体的高温烧结,经过该种方法制备得到的富锂锰基复合材料,将其应用于正极材料和锂离子电池中,可明显改善电池的首次库伦效率、倍率性能、循环稳定性和安全性,并大幅度提升使用寿命。且该富锂锰基复合材料制备方法简单、材料成本低廉,具有良好的工业生产价值。
本发明公开了一种尖晶石锰酸锂包覆球形锰酸锂的工艺方法,该工艺方法包括以下步骤:二氧化锰预处理,选取D50=6μm左右的电解二氧化锰颗粒,进行球磨,经1000R/min球磨4h;二氧化锰与球形锰酸锂混合,称取球形锰酸锂和球磨后的二氧化锰,两者放入同一容器,加入乙醇溶剂,搅拌混合,然后加入氨水,边加边搅拌,调节至溶胶状,即溶胶A;加入碳酸锂微粉,往溶胶A中加入碳酸锂微粉,加入碳酸锂,低速搅拌混合均匀;高温烧结,将上述混合物进行干燥。该尖晶石锰酸锂包覆球形锰酸锂的工艺方法,可保证球形锰酸锂结构的完整性,增加循环性能,且不会产生离子交换的阻碍,因此不会像常规阳离子包覆一样,降低了球形锰酸锂的容量。
一种钛酸锂包覆三氧化二铁锂离子电池负极材料的制备方法,属于锂离子电池能源材料技术领域,本发明利用凝胶溶胶法先制备出二氧化钛包覆三氧化二铁的中间产物,然后将这种中间产物在锂碱性水溶液中水热条件下转化成钛酸锂包覆三氧化二铁的产物。本发明方法操作简便,条件易控。制成的产品综合了三氧化二铁的高储锂容量和钛酸锂的优良的充放电循环性能,而且结构稳定。
本发明公开了一种三电极锂离子电池锂沉积的预测方法、装置、设备及介质,其预测方法包括:建立三电极锂离子电池的电化学‑热耦合模型;根据三电极锂离子电池不同倍率实测充电数据标定电化学‑热耦合模型;根据电化学‑热耦合模型获取满足第一边界条件的第一充电电流值和实测判定点的第一取值;实测判定点为负极与参比电极电压;第一边界条件包括充电电压为上限截止电压和仿真判定点的取值为第一阈值;仿真判定点为负极与隔膜的界面处固相电势与液相电势的差值;将实测判定点的第一取值作为新的第一阈值再次仿真;若电化学‑热耦合模型的实测预判点的取值小于新的第一阈值,则存在锂沉积现象。本发明的方案,便于准确预测锂离子电池锂沉积。
本发明公开了一种富锂磺化石墨烯-纳米氧化硅(SiOx,0≤x≤1)负极材料,其包含磺化石墨烯、纳米氧化硅SiOx和锂化合物,且其中所含硅元素与硫元素的摩尔比为1 : 1~16 : 1,锂元素与硫元素的摩尔比为1 : 1~1 : 5;所述纳米氧化硅SiOx的粒径为3nm~500nm, 所述磺化石墨烯的径向尺寸为0.05μm~100μm,厚度为0.5nm~20nm,所述磺化石墨烯内磺酸基的含量以碳元素与硫元素的摩尔比表示为12 : 1~3 : 1。本发明还公开了所述负极材料的制备方法。本发明的富锂磺化石墨烯-纳米氧化硅负极材料具备放电比容量高,首次库伦效率优异,循环性能出色等优点,适于在锂离子电池等设备中广泛应用,且其制备工艺简单,易于操作,成本低,可控性好,适于规模化生产。
一种球形中空钛酸锂/石墨烯复合材料作为锂电池负极材料的制备方法,属于锂电池负极材料领域,本发明采用模板法制备二氧化硅@二氧化钛的核壳结构,然后采用氢氧化锂作为锂源经水热反应将二氧化钛转化生成钛酸锂,同时借助于氢氧化锂腐蚀性去掉内部的二氧化硅,生成球形中空结构的钛酸锂。制成的球形中空钛酸锂属于尖晶石型,结构较为均一,结晶度好,内部有中空结构,具有极大的比表面积,大大增加了其与电解液的接触面积,利于充放电过程中Li+的脱嵌,极大地改善了电池充放电性能。
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池电解液、注液方法及锂离子电池。本发明提供的锂离子电池电解液,包括一次电解液和二次电解液,所述二次电解液中不包括电解质锂盐;所述添加剂B为包含不饱和键的磷系和硫系添加剂中的至少一种。本发明提供的二次电解液中不包括电解质锂盐,如此能够降低电解液粘度,提升浸润性能;本发明通过将含不饱和键的磷系和硫系等添加剂以二次注液的形式加入到电芯中,保证其仅在正极表面氧化成膜,提升对正极界面的保护;避免其在负极表面成膜,造成电芯直流内阻的增加;从而既保证电芯的长循环寿命,又兼顾电芯的低温性能、高温性能和功率性能。
中冶有色为您提供最新的江苏有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!