本发明涉及用于在对熔融锍进行造粒时浸出金属的方法,包括如下步骤:将熔融锍作为下落的流供给到造粒室(30)中,将液体射流喷洒在熔融锍的流上以雾化该锍,并且冷却如此形成的锍颗粒。该液体射流包含含有水和硫酸的酸溶液,使得当液体射流接触熔融锍时该酸溶液开始从该熔融锍浸出金属。可使来自造粒的产物溶液的一部分循环到液体射流以增加该溶液中的金属含量和降低其酸含量。
本发明涉及从燃料电池(10)的燃料电池堆(11)的组件或电解池的组件中获取金和/或银和/或至少一种铂族金属的方法。在氧化步骤中用电解质水溶液流处理并用至少一种气态氧化剂处理所述燃料电池(10)中的组件或所述电解池中的组件。在至少一个还原步骤中,用电解质水溶液流处理并用至少一种气态还原剂处理所述燃料电池(10)中的组件或所述电解池中的组件。此外,本发明涉及借助于其可执行所述方法的装置。它具有至少一个用于电解质溶液的储存容器(20)。第一管线(30)与所述至少一个储存容器(20、20a‑b)的出口(21)连接。所述第一管线具有连接到燃料电池(10)或电解池的阳极入口处的阳极入口连接件(31)。所述第一管线还具有连接到燃料电池(10)或电解池的阴极入口处的阴极入口连接件(32)。至少一个氧化剂引入单元(33)被设置用于将至少一种气态氧化剂引入第一管线(30)中。至少一个还原剂引入单元(34)被设置用于将至少一种气态还原剂和/或惰性气体引入第一管线(30)中。至少一个第一泵(35)布置在所述第一管线(30)中。
本申请公开了一种炉渣,以干基计并且以元素金属存在的金属和氧化态存在的金属的总和表示,包括:a)至少7%wt且至多49%wt的Fe;b)至多1.3%wt的Cu;c)至少24%wt且至多44%wt的SiO2;和d)至少2.0%wt且至多20%wt的CaO;其特征在于,所述炉渣,以相同基准计,包括:e)至少0.10%wt且至多1.00%wt的Zn;f)至少0.10%wt且至多2.5%wt的MgO;和g)至多0.100%wt的Pb。本申请进一步公开了改进的包括炉渣的物品、生产炉渣的方法以及炉渣的多种用途,其中,所述炉渣可以包括至多1.50%wt的锌且至少1.0%wt的CaO。
本发明涉及一种软磁铁-镍-合金,其具有35至65重量%的镍和一种或多种稀土金属铈、镧、镨、钕以及熔化条件下的夹杂,其中,稀土金属的总量是0.003至0.05重量%。
本发明涉及从含镍硫化物原料例如硫化镍精矿或矿石加工镍产品的方法。根据本发明,在大气条件下在氯化钠和氯化铜(II)水溶液中对原料进行浸出。在作为过程中一个步骤的氯-碱电解中获得浸出镍和加工产品所需的反应物例如氯、氢和氢氧化钠。
本发明涉及一种方法,其包括使包含第一金属阳离子的金属化合物与包含含有第二金属阳离子的金属多硫化物的熔体接触,从而形成所述第一金属阳离子的熔融金属多硫化物。所述方法还包括冷却所述熔体以形成硫相和固相,所述固相包含所述第一金属阳离子的熔融金属多硫化物。
一种自含金属物件合成金属产物的方法,包括使用酸液溶解该含金属物件中所含的供合成金属产物用的金属;通过选自添加碱的沉淀方式或添加燃料的燃烧方式,以得到金属产物,本发明的方法无金属冶炼及纯化的步骤,具有流程简单且一贯的优点。
一种从矿石或浓缩物中提取镍/钴有价物的方法,它包括步骤:将该矿石或浓缩物,在氧气及含有卤化物、铜和硫酸根离子的酸性溶液存在下,进行加压氧化,从而从形成的加压氧化浆料中获得含镍/钴有价物的溶液。对该溶液进行选择性沉淀处理,以获得含镍/钴氢氧化物的固体。对该固体再用铵盐溶液进行镍/钴溶浸,以产生含镍/钴有价物的溶浸溶液和残渣。镍/钴有价物通过溶剂萃取而分离,分别产生适用于电解镍和钴的溶液。本发明方法还可回收贵金属和其他金属如铜。
一种具常温及低温延展性的高温耐火合金及其制造方法,将至少四个具有高熔点的金属元素与至少四个高熔点金属元素的碳化物进行高温合金制程,由于该高熔点金属元素的碳化物能够溶解进入该高熔点金属元素内,故能够将该高熔点金属元素的体心立方结构,进行晶体结构的改变,使该高熔点金属元素成为面心立方结构,因此,当该至少四个高熔点金属元素及该至少四个高熔点金属元素的碳化物经由高温形成一合金材料后,该合金材料系会具有面心立方结构的晶体结构,因此该合金材料即可方便进行轧延、锻造、塑变等后续加工制程。
本发明涉及根据本发明的方法制造的铁素体不锈钢产品,该产品具有提高的对循环和连续热负荷以及高温下氧化的抗性,并且其在所述温度下具有提高的机械性质,并涉及其以金属丝、带、箔和/或管的形式,在高温应用中如在催化转化器应用中、在加热和熔炉应用中的用途,并且其具有以下组成(以重量%计):小于1%的NI,15~25%的CR,4.5~12%的AL,0.5~4%的MO,0.01~1.2%的NB,0~0.5%的TI,0~0.5%的Y、SC、ZR和/或HF,0~0.2%的一种或多种稀土金属(REM),例如,CE或LA,0~0.2%的C,0~0.2%的N,余量为铁和通常存在的杂质。
本发明包含通过堆摊浸出从红土矿石中提取镍、钴和其它金属的工艺以及获得的产品,其特征在于该工艺包括破碎(I)、造团(II)、堆积(III)和堆摊浸出(V),该最后阶段是逆流、连续的、堆摊浸出系统,该系统具有两个或更多阶段,它包括两相,一个是由矿石(溶质)组成,另一个是由浸出溶液或溶剂组成,它们分别在这一系列阶段的相反两端供给,并且以相反的方向流动。在最后阶段的浸出停止时,其溶质被去除,并且在由将被溶剂溶液浸出的新矿石(溶质)形成的第一位置处开始新的阶段,该溶剂溶液是从最后阶段引入的,且渗滤或流过所有的在前阶段直到其到达第一阶段,如果其载有目标金属(PLS)则进行分离。
上述发明描述了从含有铜、镍和/或金的矿石颗粒中除去砷和/或锑的硫化物的方法。将矿石颗粒进料到反应器中,其中将流化气体注入反应器中以形成含有至少一部分该矿石颗粒的流化床。将该矿石颗粒在惰性颗粒存在下加热到500和850℃之间的温度,并从该反应器中排出。至少60重量%的该惰性颗粒形成该流化床的第一区域,和至少60重量%的该矿石颗粒在该第一区域上方形成第二区域。
本发明提供了一种从经使用的电解质中回收锂电解质盐的方法,该方法包括:使包含锂电解质盐和电解质溶剂的经使用的电解质与极性非质子溶剂接触,以产生包含锂电解质盐、电解质溶剂和极性非质子溶剂的溶液,其中电解质溶剂和极性非质子溶剂中的至少一种包含碳酸酯溶剂;将该溶液与锂电解质盐难溶于其中的沉淀溶剂组合;使包含由碳酸酯溶剂溶剂化的锂电解质盐的沉淀的组合物从包含极性非质子溶剂、沉淀溶剂和电解质溶剂的溶剂混合物中沉淀,其中沉淀的组合物作为固体或作为液体沉淀;以及将沉淀的组合物与溶剂混合物分离。
本发明公开了一种从锂离子电池中回收钴、锂和相关金属的方法,该方法包括:(i)在惰性氛围下,切碎和粉碎电池;(ii)在具有亚化学计量的量的酸的还原条件下,用硫酸和二氧化硫对电池进行浸出;(iii)通过胶结回收铜;(iv)纯化浸出滤液,以沉淀出铁和铝,且如果进料电池中锰和镍的含量低,还沉淀出一些锰和镍;(v)进行离子交换,以去除残留的铜、镍和锰;(vi)用纯碱沉淀纯化的溶液,以回收所有的钴;以及(vii)将锂以碳酸盐形式回收。
一种用于从来源进行金属的超临界流体萃取的方法,所述方法包括:提供反应器室;提供包含靶金属的来源;任选地,提供螯合剂;提供溶剂;将包含所述靶金属的所述来源、所述螯合剂和所述溶剂添加至所述反应器室中;调整所述反应器室中的温度和压力,使得所述溶剂被加热并压缩至高于其临界温度和压力;任选地,向所述反应器室提供机械搅动;回收包含所述靶金属的螯合物。
本发明涉及一种从含锌和锰的固体冶金废料中回收金属锌的方法,包括以下步骤:a.将所述固体冶金废料与包含氯离子和铵离子的浸提水溶液接触以产生至少一种包含锌离子和锰离子的浸提液和至少一种不溶性固体残留物;b.通过加入金属锌作为沉淀剂来置换沉淀所述浸提液,以消除至少一种可能以离子形式存在于所述浸提液中的除锌和锰以外的金属并产生净化的浸提液;c.将所述净化的浸提液在包括至少一个阴极和至少一个阳极的电解槽中进行电解,所述至少一个阴极和至少一个阳极浸入所述净化的浸提液中,以在所述阴极上沉积金属锌并产生至少一种用后浸提液;所述方法包括,在所述电解之前,通过用高锰酸根离子氧化来沉淀锰离子并随后分离包括MnO2的沉淀物的步骤。
一种从含镍和/或钴组分及其它金属的矿石或精矿中萃取金属的方法,它包括:在pH≤2的条件下对矿石或精矿进行加压酸浸提,得到含镍和/或钴组分的溶液;在pH约为5—6的条件下对所述溶液进行第一次沉淀,得到含有非镍和非钴金属的固体以及含有镍和/或钴组分的溶液;在pH约为7—8的条件下对形成的溶液进行第二次沉淀,制得含钴和/或镍的固体。在pH为6—8的条件下对含镍和/或钴的固体进行铵浸提,随后对含镍和/或钴的浸提液进行钴溶剂萃取(在镁离子存在的条件下),随后进行镍溶剂萃取。
本发明涉及一种用于回收锂电池的方法,包括以下步骤:(a)使用浓硫酸(12)在至少100℃,特别地至少140℃的分解温度(TA)分解含有锂电池的电极的磨碎组分的磨碎材料(10),从而产生废气(14)和分解材料(16);(b)排放废气(14);和(c)湿法化学提取分解材料(16)的至少一种金属组分。
本发明涉及一种从一些电炉粉尘中回收贵重金属的方法,包括以下步骤。首先是浸出步骤,在此步骤中,电炉粉尘在常压下于第一道浸出溶液中浸出,产生第一道浸出液和第一道浸出渣,第一道浸出溶液含有一种稀无机酸。然后,第一道浸出液从第一道浸出渣中分离出来。接着进行第二道浸出步骤,在此步骤中,第一道浸出渣在常压下于第二道浸出溶液中进行浸出,形成第二道浸出液和第二道浸出渣,第二道浸出溶液包含一种带有还原剂的稀盐酸溶液。然后,第二道浸出液与第二道浸出渣分离。接着进行锌沉步骤,在此步骤中,用一些碱来处理第二道浸出液,使锌从第二道浸出液中沉淀出来,所选择的碱要足以调整第二道浸出液的PH值,使锌以锌盐的形式离开第三道液体沉淀到第三道渣中,然后把含有锌的第三道渣与第三道液体分离。
提供用于回收稀土元素的系统和方法。这种系统和方法通常包括使用在中空纤维的孔内具有固定化有机相的渗透性中空纤维的膜辅助溶剂萃取。渗透性中空纤维通常在其一侧与酸性含水进料接触,和在其另一侧与反萃取溶液接触。这种系统和方法通常包括作为连续回收过程的同时萃取和反萃取稀土元素,该连续回收过程非常适合于消费后产品、报废产品及其他稀土元素回收来源。
将由未用过的惰性阳极、用过的惰性阳极和惰性阳极生产中使用的金属陶瓷得到的金属陶瓷材料精选成非铁金属精矿组合物,可使用常规熔炼过程容易地从该组合物中回收其中包含的有价金属。本发明还涉及该组合物在从本发明的金属陶瓷组合物中回收有价金属的熔炼过程中的应用。
本发明提供用于通过用干燥空气汽提热硫酸从硫酸生产浓硫酸的方法和系统。硫酸的浓度为90-98重量%,浓硫酸的浓度为95-98.8重量%。空气在吸湿装置中进行干燥。硫酸可以通过冷却和冷凝包含三氧化硫/水的尾气由此形成硫酸而形成。冷却和浓缩可以在空气冷却器中进行,如果使用吸收干燥器,它可以通过为从空气冷却器的出口转移的冷却空气进行再生。
本发明涉及从含有金属的炉渣中提取金属的方法,其中,将熔融的含有金属的炉渣在至少一个电弧炉(1、2)中加热。为了提供一种用于从炉渣中提取尤其是铜的改进方法,本发明建议将含有金属的炉渣在形式为交流电炉或直流电炉的第一炉(1)中加热并且将熔液投入形式为直流电炉的第二炉(2)中。此外,本发明还涉及用于从含有金属的炉渣中提取金属的装置。
本发明涉及一种制造具有所需锰、镍和钼含量的机械耐用的含铬和铁的团块的方法。本发明还涉及通过所述方法制造的具有所需锰、镍和钼含量的含铬和铁的团块。
本实用新型描述用于净化含有二氧化硫的气体的设备。详细地,包含至少一个骤冷塔(10)、至少一个气体冷却塔(30)和至少一个静电沉淀器(40,42),特征在于预见了至少一个导管(43,44,45)来排放来自(一个或多个)静电沉淀器(40,42)的液体相,用于添加反应试剂的泵罐(60)和额外的填充床塔(70),其中该填充床包含二氧化硅。
本发明公开一种从废弃印刷电路板中回收金的方法。首先,对废弃印刷电路板进行微波裂解,接着,使用硫酸系酸浸液对微波裂解后形成的固体残留物进行酸浸处理,然后,使用硫代硫酸盐混合液从经酸浸处理的所述固体残留物中溶取出金离子,以得到含金离子溶液,最后,在所述含金离子溶液中加入氧化剂,使得金离子形成金属金。借此,能实现废弃印刷电路板中金的再利用。
中冶有色为您提供最新的其他有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!