本发明涉及一种辅助设备,尤其涉及一种新能源锂电池检测辅助设备。本发明的技术问题是如何提供一种在检测过程中连续不停止、无需中断操作对电池标记的新能源锂电池检测辅助设备。一种新能源锂电池检测辅助设备,包括有支架、安装板和夹紧套等;前后两侧支架内侧设有安装板,安装板顶部开有条形槽,条形槽左右两侧内壁均设有夹紧套。本发明通过左右两侧触头的相互配合,便于高效地对单根电池进行快速检测,省去了常规检测的大量步骤,通过为设备设有误触功能,避免工人由于操作失误对电池标记,进而导致工人将其误以为是损坏的电池而更换,造成车主的经济损失,达到了保证设备诊断正确的效果。
本申请提供了一种聚偏氟乙烯基固态电解质的制备方法,所述固态电解质的制备方法包括:将聚偏氟乙烯‑三氟乙烯‑三氟氯乙烯、双三氟甲磺酰亚胺锂与溶剂混合得到混合溶液;将混合溶液烘干得到所述固态电解质。所述聚偏氟乙烯‑三氟乙烯‑三氟氯乙烯与双三氟甲磺酰亚胺锂的质量比为(3‑6):3。本申请提供的聚偏氟乙烯基固态电解的制备方法得到较高离子电导率的固态电解质。本申请还提供了一种用上述方法制备的固态电解质及包含所述固态电解质的锂离子电池。
本发明公开了一种锂离子电池用无定形三磷化四锡/磷/少层石墨烯负极材料及其制备方法与应用。该负极材料是由少层石墨烯碳包覆无定形三磷化四锡和磷构成,其制备方法为:将锡粉和磷粉混合后进行球磨,得到三磷化锡;将所得三磷化锡与膨胀石墨混合进一步球磨,得到无定形三磷化四锡/磷/少层石墨烯复合材料。本发明所制得的负极材料与磷酸亚铁锂正极材料配对,组装所得锂离子电池表现出容量高、循环稳定的优点,具有应用潜力。本发明的制备方法工艺简单、重复性好、耗时短、环境友好,有助于实际工业生产。
本发明涉及聚合物锂电池技术领域,且公开了一种高可靠性的能够消气补液的聚合物锂电池,包括锂电池主体,所述锂电池主体的顶部固定连接有底部为开口的密封箱,锂电池主体的顶部开设有消气口,锂电池主体的顶部滑动接触有密封盖,且密封盖与消气口密封配合,密封箱的一侧开设有操作口,密封箱的一侧内壁上滑动接触有密封板。本发明通过对操作口和消气口的设置有效解决电池的规律性气胀问题,方便加注新电解液,补充因电解液多循环后导电率下降使电池寿命降低,保证了电池在寿命期的安全性、可靠性和一致性,通过密封盖和密封板对消气口和操作口进行密封,保障了锂电池主体的密封性,满足了使用者的需要。
本发明公开了一种锂电池负极材料回收利用方法,包括以下步骤:将废旧锂离子电池放电完全;将废旧锂离子电池置于手套箱中取出电芯;取出电芯中的负极片;将负极片放入粉碎机中;将粉碎后的混合物过筛,得到合格的负极粉料和铜粉;将负极粉料再次碎粉,分级成中位粒径(D50)为8‑10μm的微粉;本发明通过机械破碎负极极片,使得粘接剂分解失去粘接作用,负极粉料从集流体上分离脱落,重力分选及过超声波振动筛的工序,提高回收材料纯度,同时通过低温石墨化工艺使得人造石墨材料的循环寿命得到提高,且生产工艺简单,加工过程安全。
本发明属于锂离子电池正极材料领域,公开了一种磷酸锂包覆高镍三元正极材料的制备方法,包括以下步骤:(1)采用高温烧结法制得高镍三元正极材料;(2)将磷酸盐溶于水中,得到包覆液;(3)将高镍三元正极材料和水混合,再加入锂源搅拌,得到悬浊液;(4)将包覆液滴入悬浊液中反应,抽滤,得到湿料;(5)将湿料干燥,过筛,烧结并保温,即得。本发明使用水作为溶剂进行包覆,在工业上有可操作性和可靠性;本发明在水溶液中溶解后再沉淀,属于化学包覆的过程,包覆均匀,包覆剂没有自团聚或者偏聚。
本发明属于锂离子电池正极材料技术领域。一种高电压镍锰酸锂正极材料,所述高电压镍锰酸锂正极材料具有壳核结构,其核层材料为LiNi0.5‑xMn1.5‑yMx+yO4,其中,M为Ti、Mg、Zn、Cu、Al、Ga、In、F、La、Cr、Si、Sn中的至少一种,0≤x≤0.1,0≤y≤0.1,x+y≤0.1;其壳层材料为类石墨烯包覆的LiNi0.5Mn1.5O4;壳层材料为核层材料质量的5‑25%,LiNi0.5Mn1.5O4质量占壳层材料总质量的90‑95%。本发明材料壳核结构稳定,具有良好的倍率性能好、电化学性能和循环性能。
本发明涉及一种用于锂硫电池功能性隔层的制备方法及根据制备方法得到的功能性隔层,包括以下步骤:第一步,制备四氧化三铁空心球;第二步,制备MXene‑四氧化三铁复合材料;将研磨过的MAX相陶瓷粉体浸入质量分数为30%~50%的HF溶液,升温、搅拌,离心后将产物用去离子水洗涤至中性,干燥后得到MXene;将第一步中制备的四氧化三铁空心球和MXene按照质量比1:3~5混合并溶于100~200mL去离子水中,之后超声得到混合均匀的溶液,在120~160℃条件下进行喷雾干燥,收集产物得到用于锂硫电池的功能性隔层。本发明可有效缓解了现有技术制备的锂硫电池中多硫化物“穿梭效应”明显,并解决电池的电化学性能不稳定的缺陷。
本发明公开了一种有机硅硫正极材料及其制备方法、正极极片和锂硫电池,该有机硅硫正极材料的制备方法包括:将多硫化物溶于有机溶剂,而后加入卤代硅氧烷,在150~250℃条件下进行反应;而后温度降至50~100℃,加入碱液进行水解缩合反应,再对产物进行洗涤、干燥制得。本发明有机硅硫正极材料的制备方法工艺简单,不仅通过硅氧烷之间水解缩合形成纳米结构包覆硫,还通过化学键与硫相连接,进一步降低多硫化物在循环过程中的溶解和穿梭现象,所制得有机硅硫正极材料可用作锂硫电池的正极材料,可提高锂硫电池的循环稳定性。
本发明涉及锂电池保护胶技术领域,具体涉及一种在加工过程中用于保护锂电池电极材料的丙烯酸酯压敏胶粘剂、胶带及其制备方法,该胶黏剂包括以下重量份的原料:丙烯酸异辛酯18‑28份、醋酸乙烯酯8‑10份、甲基丙烯酸甲酯8‑10份、丙烯酸正辛酯5‑7份、丙烯酸5‑7份、KH570硅烷偶联剂8‑15份、偶氮二异丁腈引发剂0.2‑0.5份、氮丙啶0.2‑0.4份、溶剂44‑63份,该丙烯酸酯压敏胶粘剂兼具优异的耐高温粘性保持性能和易于快速撕除的性能,能够在锂电池的生产过程中很好保护好电极材料的同时提高生产效率,提高经济效益。
一种包覆共掺杂改性的正极活性材料的制备方法,包括以下步骤:提供镍盐、钴盐、锰盐、锂盐、强碱液、包覆共掺杂剂;混合所述镍盐、钴盐、锰盐、强碱液,得到混合液;在惰性气氛下,对所述混合液进行加热处理,得到镍钴锰前驱体;混合所述镍钴锰前驱体、锂盐、包覆共掺杂剂,得到混合物;及在氧气气氛下,对所述混合物进行烧结处理,得到正极活性材料,所述正极活性材料包括镍钴锰三元材料和包覆于所述镍钴锰三元材料外的包覆层。本申请还提供一种由所述正极活性材料的制备方法制得的正极活性材料、应用所述正极活性材料的正极、应用所述正极的锂离子电池。本申请的正极活性材料的制备方法具有工艺简单、节能高效、生产成本低的优点。
一种锂电池保护组件包括锂电池保护板、多个紧固块及定位架。锂电池保护板包括线路板及电子元器件,多个紧固块间隔设置于线路板的边缘上,且多个紧固块均位于线路板远离电子元器件的侧面上,定位架包括橡胶框及多个树脂拉条,橡胶框开设有多个定位孔,各定位孔的直径小于锂电池的直径,各定位孔均用于容置锂电池,上述锂电池保护组件用过设置锂电池保护板、多个紧固块及定位架,定位夹用于固定锂电池,锂电池保护板用于在对锂电池冲放电是提供保护,多个紧固块便于将锂电池保护板和定位架进行连接,且可以随时拆卸,当锂电池存在质量问题时,可以将有问题的锂电池从定位架上拆卸下来,不需要借助其他工具,提高锂电池的生产效率。
本发明公开了一种预锂化和石墨烯包覆的介孔SiO负极材料及其制备方法,先将金属锂加入到非水溶剂中形成锂溶液;其次将氧化石墨烯加入到分散溶剂中进行超声处理得到0.5~60?g/L氧化石墨烯分散液;向分散液中加入比表面积为500~700m2/g的纳米介孔SiO2微球进行超声处理;然后在搅拌条件下加入锂溶液;接着加入锂络合剂,搅拌、过滤、洗涤得到前驱体;最后将前驱体真空干燥研磨均匀后装入刚玉舟内,置于惰性气氛炉中烧结,随炉冷却,得到预锂化和石墨烯包覆的介孔SiO负极材料。本发明在制备石墨烯包覆介孔SiO负极材料过程中复合材料同时得到预锂化,提高了硅氧化物负极材料的首次库伦效率、循环性能和充放电比容量。
本发明提供了一种磷酸铁锂动力电池组SOC的估算方法,通过将二次电池与磷酸铁锂动力电池单元进行串联,拟合出磷酸铁锂动力电池单元SOC与二次电池端电压U1的函数关系为:SOC=UaK1/K2+(M1-M2)/K2,再实时检测二次电池与磷酸铁锂动力电池单元串联后的端电压,计算出磷酸铁锂动力电池单元的SOC。与现有技术相比,本发明拟合出磷酸铁锂动力电池单元SOC与二次电池电压的函数关系,再通过电池管理系统BMS实时监测二次电池的端电压,便可以迅速计算出磷酸铁锂动力电池单元的SOC。由此可见,本发明原理简单,更容易得到广泛应用和推广。
本发明公开了一种具有优异高温力学性能的含双相α+β的铸造镁锂合金及其加工工艺。按重量百分比计,合金的组成为:Li:6.0‑10.0wt.%,Mn:0.1‑0.6wt.%,V:0.1‑0.2wt.%,Cd:0.1‑0.2wt.%,Ho:0.1‑0.2wt.%,Sm:0.1‑0.2wt.%,余量为镁。本发明针对目前100度左右下镁锂合金力学性能急剧降低和恶化提供了一种新颖材料学的解决方案。该材料具有传统镁锂合金的力学性能:弹性模量为50‑70GPa,屈服强度为90‑120MPa,抗拉强度为140‑160MPa,延伸率为6‑18%。并具有传统镁锂合金不具备的高温力学性能:在100度下,屈服强度为140‑150MPa,而传统镁锂合金在100度下,屈服强度为65MPa左右。该铸造镁锂合金冶炼加工方法简单,生产成本比较低。在保证高温力学性能的同时,也使得合金的使用寿命有了进一步提高,便于工业化大规模应用。本发明镁锂合金可用于制造在使用温度为100度以下,具有极其显著的轻量化效果。
本发明提供了用含锰废液制备硝酸盐和硫酸锂混合产品的方法,将生产对苯二酚所得含锰废液抽滤后得到澄清的含硫酸锰、硫酸铵、硫酸的滤液和含单质残渣的滤饼,含单质残渣的滤饼与过量硫酸反应,得到含硫酸钙、硫酸镁、硫酸锌、硫酸钠,硫酸铝、硫酸镉和硫酸镍的溶液,而后再与硝酸锂溶液混合反应,得到含硝酸钙、硝酸镁、硝酸锌、硝酸钠、硝酸铝、硝酸镉和硝酸镍的硝酸盐和硫酸锂的混合溶液,经过滤,得到硝酸钙滤饼和含硝酸盐和硫酸锂的滤液;含硝酸盐和硫酸锂的滤液经减压蒸馏、冷却结晶、析出混合硝酸盐晶体和硫酸锂晶体,过滤分离,得到硝酸盐和硫酸锂混合产品。
一种降低锂离子电池阻抗的负极片及其制备方法,属于锂离子电池领域。所述负极片包括集流体,导电层,负极层,导电层和负极层中均含有羧甲基纤维素锂。制备方法包括如下步骤:将羧甲基纤维素锂,导电剂,粘结剂,溶剂充分搅拌配制成均匀浆料,将导电浆料均匀涂覆到集流体表面,烘干得到导电层。将含有羧甲基纤维素锂的负极浆料涂覆在导电层表面,烘干后得到负极层,即制得负极片。本发明通过在负极层与集流体之间加入一层导电层,在增加极片粘结力的同时,导电性更好,同时在导电层及负极层中加入羧甲基纤维素锂,有效提高锂的传输效率,从而极大降低了电池阻抗,并对循环和首次化成效率有一定的改善作用。
本发明涉及一种新型溴化锂吸收式热泵及其制热方法。所述新型溴化锂吸收式热泵包括吸收器、溶液换热器、发生器、蒸汽换热器、冷凝器以及蒸发器。本发明将吸收器出来的溴化锂稀溶液分成两路,分别被发生器出来的溴化锂浓溶液和高温蒸气加热,提高了进入发生器的溴化锂稀溶液的温度,降低了发生器中高温热量的消耗,从而在不改变高温驱动热源温度的条件下,通过优化单效溴化锂吸收式热泵的结构提高了热泵的制热效率,无需采用多效的溴化锂吸收式热泵来提高制热效率,降低了系统复杂性。
本发明涉及一种锂合金靶材及其制备方法与应用,该锂合金靶材的制备方法中,通过在靶管的外壁设置凹陷部或纹路可增加靶管表面与熔融反应液的接触面积,并使得混合液冷却收缩时的应力释放首先出现在凹处部分,从而使混合液在冷却过程中与靶管能够紧密贴合,得到品质优异的锂合金靶材。该锂合金靶材能对电极材料进行有效的补锂,从而解决锂离子电池体积膨胀的问题,并提高锂离子电池的循环使用寿命。
本发明提供了一种改性磷酸铁锂材料及其制备方法,所述制备方法包括如下步骤:将锂源、磷源和铁源溶于酸性溶液中,得到第一溶液;在所述第一溶液中加入第一单体、第二单体和还原性碳源,得到第二溶液,然后第一单体和第二单体进行缩聚反应,第二溶液进行自热蒸发反应,得到改性磷酸铁锂前驱体;在保护性气体下,对所述改性磷酸铁锂前驱体进行烧结,得到所述改性磷酸铁锂材料。本发明提供的制备方法得到的磷酸铁锂材料颗粒形貌和粒径大小更加均匀,最后得到的改性磷酸铁锂材料的电子传导性更优,导电性更好。
本发明公开了一种聚合物固态电解质、全固态锂电池及其制备方法。全固态锂电池包括正极、聚合物固态电解质层和负极,且正极、聚合物固态电解质层和负极依次层叠,所述聚合物固态电解质层是由聚合物电解质前驱体溶液与所述正极和负极原位聚合反应一体形成。本发明全固态锂电池所含聚合物固态电解质层与正负极之间的结合强度高,而且增强了聚合物固态电解质层离子电导率,电化学性能稳定。所述全固态锂电池的制备方法能够有效保证制备的全固态锂电池性能稳定。本发明聚合物固态电解质能够很好的解离第一锂盐,导电率高,而且柔性高,有利于锂离子在电解质中的传导,从而具有室温高离子电导率特性。
本发明涉及一种阻燃锂离子电池复合隔膜及其制备方法和应用,该阻燃锂离子电池复合隔膜的制备原料,按照质量百分比计,包括三聚氰胺甲醛树脂80%~95%及金属有机框架材料5%~20%。三聚氰胺甲醛树脂作为基体,具有高温下稳定性好、阻燃性、抗蠕变性能良好等优点。利用金属有机框架材料的多孔性和比表面积大的特点,极大地增加了阻燃锂离子电池复合隔膜的孔隙率,有利于锂离子的通过。并且金属有机框架材料中的金属离子能够与三聚氰胺甲醛树脂中的亚氨基产生相互作用,进一步提升阻燃锂离子电池复合隔膜的热稳定性,使阻燃锂离子电池复合隔膜具有大的比表面积和良好的热稳定性,作为锂离子电池隔膜具有良好的阻燃性能。
本发明公开了一种低共熔溶剂电解液及制备方法与锂金属电池。所述低共熔溶剂电解液包括:锂盐、酰胺类化合物、添加剂;其中,所述锂盐与酰胺类化合物的摩尔比为1:1~1:10;所述添加剂包括环状碳酸酯类化合物。本发明将预定摩尔比的锂盐和酰胺类化合物共混,形成低共熔溶剂电解液。所述低共熔溶剂电解液具有不可燃,电导率高,电化学窗口大等优点;将所述电解液应用于锂金属电池,可实现锂离子在电解液中的快速迁移和球形沉积,无锂枝晶生长,且具有高循环寿命,同时所述低共熔溶剂电解液成本较低,安全性高,具有良好的应用前景。
本发明提供了一种可快速嵌锂的负极片及包括该负极片的电池。本发明的负极片中的铌钨氧化物具有三维锂离子传输通道,倍率性能好,在负极涂层中掺混一定量的铌钨氧化物可以显著提升锂离子传输能力。本发明的负极片中的硅碳以合金化形式嵌锂,嵌锂通道丰富,且平均嵌锂电位高,因此快速嵌锂能力好于石墨。
本发明涉及锂电池封装领域的用于锂电池封装的精封设备,用于锂电池封装的精封设备,包括固定板、定位组件和封装组件,所述定位组件包括换向器、旋转台、若干安装板和若干用于夹持锂电池的定位夹,封装组件包括上顶气缸、下压气缸、上调整座、下调整座、前后调整座和左右调整座,工作时启动精封设备,通过对上调整座和下调整座之间的封装距离调节,使封装的厚度可调节,当封装位置出现偏差可通过前后调整座和左右调整座的活动槽口进行调整,封装时锂电池的上翘变形会使其极易报废,通过上调整座和下调整座之间的压簧片可对锂电池进行一定的限定,使封装时锂电池不易上翘变形,提高生产效率,降低生产报废的成本。
本发明公开了一种锂离子电池用金属箔波浪边检测装置,包括底板、极片锁紧夹、拉伸滑台和数显标尺,极片锁紧夹和拉伸滑台均设置于底板,拉伸滑台包括两个固定座、一个极片固定夹、一根丝杠、两根光杠和一个调节旋钮,两个固定座分别与两根光杆固定连接,极片固定夹滑动设置于两根光杆,并且极片固定夹位于两个固定座之间,数显标尺设置于极片固定夹,丝杠的一端与极片固定夹活动连接,丝杠的另一端穿过其中一个固定座且与调节旋钮连接。该装置快捷简便的给出波浪边的量化值,对分条后金属箔波浪边给出了量化性的评估,增加了锂电生产的过程监控的能力,提高电芯卷绕的精度和优率。此外,本发明还公开了一种锂离子电池用金属箔波浪边检测方法。
本发明公开了一种锂离子电池电极片,所述电极片含有粘结剂Ⅰ,所述粘结剂Ⅰ选自马来酸酐接枝聚偏氟乙烯、聚甲基丙烯酸甲酯或聚环氧乙烷中的任意一种或者至少两种的混合物。所述电极片可以为正极片或负极片。本发明还公开了上述正极片的制备方法,所述方法包括如下步骤:(1)将粘结剂Ⅱ加入到溶剂中,搅拌至溶解,然后向其中加入粘结剂Ⅰ,配成粘结剂母液;(2)向粘结剂母液中加入导电剂和正极活性材料,配成浆料,然后进行涂布和烘干,制备成锂离子电池正极片。本发明的制备工艺简单,生产效率高,与现有制备电池的设备兼容,可以实现工业化、大批量生产,所制得的锂离子电池正极片,具有良好的加工性能和保液性能。
本发明提出了一种锂离子动力电池多点温控保护方法,所述锂离子动力电池上贴装有多个用于检测测量点温度的热敏电阻,所述热敏电阻连接有固定电阻,所述保护方法包括如下步骤:采集当前各测量点的热敏电阻的值;依据所述热敏电阻的值得到各测量点的温度值;将各测量点的温度值进行比较,并依据比较结果采取相应的处理措施。本发明还涉及一种实现上述保护方法的装置。实施本发明的锂离子动力电池多点温控保护方法及装置,具有以下有益效果:能及时保护电池、延长电池使用寿命、减慢电池容量衰减、能及时体现电池实际温度。
本发明属于锂离子二次电池技术领域,尤其涉及一种锂离子二次电池的首次充电化成方法,包括以下步骤:将已注有电解液的锂离子二次电池进行陈化处理,然后在负压状态下逐步增加充电电流对电池进行分段充电化成,当电压到达3.6V时,对电池进行封口;对电池进行老化处理,然后先以0.5C~1C的倍率恒流充电至3.8~4.0V,再以0.2C~0.5C的倍率恒流充电至4.2V,最后在4.2V下恒压充电。相对于现有技术,本发明采用分段充电化成的方法先将电池充电至3.6V,可以将在形成SEI膜的过程中产生的有害气体及时排出,更好的保证Li+的迁移,使形成的SEI膜更加均一、稳定和致密,从而提高其循环性能和大倍率放电性能。
中冶有色为您提供最新的广东有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!