本发明涉及一种用黄铜炉渣和含锌烟道灰制备碱式氯化铜及碱式氯化锌的工艺。本所述工艺,包括步骤S1.酸浸、S2.合成碱式氯化铜、S3.合成碱式氯化锌。本发明的工艺实现了将黄铜炉渣和含锌烟道灰的铜元素和锌元素有效回收,与目前只能针对黄铜炉渣或含锌烟道灰单独处理,并且仅能回收其中的铜或锌的工艺相比,本发明大大提高了资源利用度,整个工艺制备出的碱式氯化铜以及碱式氯化锌符合饲料级标准;并且只产生一种生产废水,减轻了废水处理负担,符合循环经济以及资源综合利用的原则。
本发明属于固体废弃物资源化处理技术领域,具体涉及一种外加电场强化复合微生物产氰能力的方法及装置。在用于微生物生长反应的处理室中培养具有产氰能力的复合微生物,通过分解甘氨酸等前体物质产生次级代谢产物CN‑,可以络合环境中的金属元素以便提取;通过增加电场系统可以促进微生物的代谢行为,提高微生物浸出效率,结合搅拌系统保证微生物与培养基的营养物质充分接触,温度控制系统调节适宜的温度,为复合微生物提供适宜的生长及产氰环境。本发明装置简单、运行成本低、绿色高效,提高了微生物的产氰能力,非常适用于大规模产业化生产。
本发明公开了一种废旧印刷电路板中各组分材料的分离及回收方法,其特点是废旧印刷电路板依次进行真空热解、剪切破碎、筛分分级、重力分选、中温煅烧后,使废旧印刷电路板中全部组分材料得到分离和回收,并分别获得有机热解油、金属混合物及玻璃纤维;回收的有机热解油可作为燃料油或化工原料利用、金属混合物可作为冶金工业原料利用、玻璃纤维可作为玻璃纤维加工原材料或填料利用,达到了全部资源回收利用的目的;本发明方法能有效的分离和回收废旧印刷电路板中全部组分材料,并具有工艺方法简单可行、高效、无污染等特点,因此具有很好的社会效益、经济效益和环境效益。
本发明涉及电池电解液回收技术领域,具体而言,涉及一种回收电池中电解液的装置和方法。所述装置包括:壳体、传送装置、加料装置、液化温控装置、气化温控装置、电解液接收装置、电池料接收装置、气体注入和储存装置以及气体循环装置。该装置和方法在处理过程中可以保持系统为封闭状态,可以洗涤出残留在电池固体废料中的电解液,防止其在电池回收过程中分解和产生有毒物质,污染环境和影响人体健康,所回收的电解液还可提纯再利用,节约成本。
本发明提供一种废旧锂-二氧化锰电池材料回收利用的方法,包括以下主要步骤:步骤A:将废旧锂二氧化锰一次电池彻底放电后,拆开电池外壳,将其部件直接回收,并将正极材料从正极片上分离出来;步骤B:测定所得到的正极材料中锂、锰元素的含量,按照摩尔比Li/Mn为0.5-0.58,调整比例,然后粉碎混合均匀;步骤C:将所得混料放入马弗炉中预烧,空气气氛中300-500℃焙烧1-2小时,室温冷却后再次粉碎混合均匀;步骤D:将所得预烧后混料再次放入马弗炉中,600-1200℃下焙烧4-50小时,冷却至室温出炉,粉碎过筛,由此制得锂离子电池正极材料锰酸锂。本发明易于实现规模化生产,解决废旧锂二氧化锰电池可能引起的环境问题,具有很高的经济效益和社会价值。
本发明涉及冶金技术领域,公开了一种冶金用粉末加料装置,包括收集斗,述收集斗的上侧设置有搅拌机构,搅拌机构的外侧与搅动机构连接,搅动机构的数量为两个,两个搅动机构左右对称设置在收集斗内,所述搅拌机构位于连接管内。本发明通过设置搅拌机构,其中电机工作时能够带动固定圈旋转,固定圈能够带动齿条旋转移动,齿条旋转在齿牙的作用下能够控制滑块移动,当齿条不再与齿牙啮合时,第一弹簧能够拉动滑块移动,此时滑块能够前后移动并带动多个刮杆移动,刮杆移动能够将收集斗内壁附着的粉末刮下,同时刮杆能够带动搅动杆前后移动,从而能够对收集斗内结块的粉末打碎,避免粉末上料受到影响。
本发明公开了一种废弃电器电子产品回收处理系统,其特征在于,包括控制系统以及由控制系统控制的破碎系统、分选系统、集尘系统、废气收集系统以及引风机,所述破碎系统包括敲击破碎机,所述分选系统包括风选机以及塑料金属分选装置,所述敲击破碎机、风选机以及塑料金属分选装置通过输送装置依次连接构成塑料和金属分选生产线,所述敲击破碎机和风选机的出风口分别与集尘系统连接,收集整个处理系统的轻质物料和粉尘,所述的集尘系统的出风口与废气收集系统连接,而所述引风机与废气收集系统连接,使敲击破碎机、风选机、集尘系统及废气收集系统处于负压状态。该系统可分别适用于冰箱和线路板等多种废旧电器的破碎分选处理。
本发明属于含锌危固废及锌矿处理技术领域,公开了一种氯化焙烧联合氨法浸出电解处理含锌危固废及锌矿的方法。向含锌危固废或氧化锌矿中加入氯化盐混合制球,升温至600℃以上进行焙烧处理,其烟尘使用碱性溶液进行喷淋吸收,反应产生的氢氧化锌使用氨法浸出电积工艺生产电解金属锌。本发明使用解决了低含量含锌原料在遇到铁硅钙等元素单含量过高时高温还原挥发炉渣软熔导致回转窑结圈堵塞无法正常生产等难题,降低了回转窑焙烧温度,提高了锌的分离效率与回收效率,同时通过氨法浸出电积解决了中间产品氢氧化锌含氯离子无法使用传统硫酸法电解的难题,具有较高的社会效益和经济效益。
本发明公开了一种再生型锂离子正极材料及其制备方法。制备步骤包括:1)将废旧锂离子电池正极极片,浸泡于有机溶液中,搅拌,收集沉淀物;2)将沉淀物煅烧,后酸浸处理,得浸出液,萃取,得萃取液;3)在萃取液中加入镍、锰和钴盐,调整溶液中Ni2+、Mn2+和Co2+的摩尔比,得调整液;4)在调整液中加入沉淀剂,共沉淀,得再生前驱体;5)将再生前驱体与锂源混合,后煅烧,得再生型锂离子正极材料;其中,步骤4)中共沉淀至含有炭材料的分散液中。该再生型锂离子材料具有更好的电化学性能,该制备方法无需增加新的设备及改变回收技术路线,简单易行。
本发明属废铅酸蓄电池资源再生领域,公开了一种废铅膏脱硫产物无渣冶炼回收铅及脱硫剂循环方法,包括以下步骤:使用机械破碎机将铅酸蓄电池壳体(PP塑料)破碎成粉末(50目以下),并以此为碳源对废铅膏脱硫产物进行冶炼还原耦合简单水洗,高效回收废铅膏脱硫剂(Na2MoO4)溶液和一氧化铅(PbO)。测试结果表明,在无铁、碳低温冶炼还原过程中能够实现高达95.3wt%铅的回收且无冶炼渣产生。此外,简单室温水洗能够实现100wt%的钼以钼酸钠溶液的形式被回收且表现出优异的废铅膏脱硫效率(98.7wt%)。因此,本文为二次铅冶炼行业高效、绿色、低成本回收铅资源提供一种切实可行的方法。
本发明涉及一种金盐氰化物中金的分析方法。所述方法包括下列步骤:步骤一:配置熔剂:将无水碳酸钠、无水硼砂、二氧化硅和氧化铅按照比例混合均匀;步骤二:称取试料和面粉与熔剂混合均匀,并在上面覆盖一层氯化钠;步骤三:将容器置于高温炉中,在高温条件下冶炼;步骤四:冶炼出的合金经过高温熔化,进行灰吹铅而分离出金;步骤五:分离的金经过洗涤和干燥;步骤六:称取金的重量并计算结果。本发明方法能直接分离富集金盐氰化物中的金,适用性强,操作简单,方法快速,结果准确,无污染,无干扰。本方法适合金盐氰化物样品中金的测定。
本发明公开了利用高压天然气压力能回收废旧PCB的工艺及装置。该装置包括天然气膨胀降温系统、冷媒循环供冷系统和常低温二级粉碎系统;天然气膨胀降温系统的第一透平膨胀机分别与第一换热器的壳程出口和第二换热器的管程入口连接;第二换热器的壳程出口与第二透平膨胀机入口连接;常低温二级粉碎系统的常温机械粉碎设备与第一透平膨胀机连接,常温机械粉碎设备出料口与磁选分离器与连接,磁选分离器的出料口与旋转自动加料混合设备的进料口相连,旋转自动加料混合设备的混合出料口与套管换热器的管程入口连接;本发明解决了废旧PCB的污染问题,实现了废旧PCB的循环再生资源利用,本发明工艺无污染,能耗仅为传统工艺的5%—10%。
本发明属于固废处理技术领域,公开了一种亚熔盐法回收电镀污泥中铬的方法。将电镀污泥与碱液充分搅拌混合形成污泥浆料,然后干燥至含水率低于20%,得到干燥污泥;将得到的干燥污泥在空气气氛下280~580℃焙烧处理,然后用水或弱酸水溶液进行浸取,过滤分离后得到含铬溶液和脱毒泥渣。本发明利用了碱金属氢氧化物NaOH和KOH的低熔点,形成亚熔盐状态,促进反应物之间的充分混合,以及与空气的接触,并针对含钙元素的情况,加入碳酸钠或碳酸钾促进铬酸钠、铬酸钾及碳酸钙形成,避免铬酸钙形成,有利于铬酸盐的充分溶解。采用本方法铬的回收率大于90%,实现了电镀污泥的资源化利用,具有良好的社会经济效益和生态环境效益。
本发明公开了一株氧化亚铁硫杆菌及其应用,该菌是氧化亚铁硫杆菌(Acidithiobacillus?ferrooxidans)Z1,由中国典型培养物保藏中心保藏,简称CCTCC,保藏号为:CCTCC?NO : M2013102,保藏日期为2013年3月25日。该菌可在好氧条件下浸出废旧PCBs中的有价金属。该菌株具有高效的生物浸出率和浸出速率,且具有很好的环境适应力。
本发明涉及一种取出存放设备,尤其涉及一种粉末冶金成品用的取出存放设备。提供一种能够自动将冶金成品取出,工作效率高的粉末冶金成品用的取出存放设备。一种粉末冶金成品用的取出存放设备,包括有:机架;条形块,条形块为两个,均安装在机架上;滑套,滑套为两个,均滑动式安装在条形块上。本发明通过夹具能够将冶金成品取出,通过拉动组件能够拉动滑套向前移动,使冶金成品向前移动取出,通过驱动组件能够在将冶金成品取出时提供动力,通过存放组件能够将取出的冶金成品集中收集存放,通过下降组件能够自动将冶金成品夹紧,通过横摆组件与竖摆组件配合能够将存放框内的冶金成品移动至左部,避免堆积,方便后续冶金成品掉入存放框内。
本发明公开了一种不同电量废旧电池正负极回收及其再利用的方法。该方法包括:拆解废旧磷酸铁锂电池收集脱锂正极和嵌锂石墨负极,接着将嵌锂石墨置于去离子水中超声实现锂和石墨的回收,最后将回收的锂产品作为锂源与脱锂正极重新合成正极材料用于锂离子电池;除锂提锂后的废旧石墨作为锂离子电池负极材料回用或球磨后用于钠离子电池负极材料。本发明提供的方法有益于促进高效、低成本地实现废旧锂电池回收,具有一定的实际应用价值。
本发明公开了一种废旧电路板电子元器件高附加值资源化的装置。包括真空加热装置、若干个串联的冷凝器、储存罐、真空泵、集气瓶;所述真空加热装置的端部上部通过输送管道与冷凝器连接,真空加热装置和冷凝器之间的输送管道上设置有阀门;储存罐连接于冷凝器的底部,集气瓶通过输送管道与最后一个冷凝器连接,真空泵设置于冷凝器尾端、集气瓶和冷凝器之间的输送管道上,与整个装置连通。利用本发明的装置可以以废旧电路板电子元器件为原料,最终获得各种热解油气和各种单质金属,实现废旧电路板电子元器件的高附加值资源化利用,而且工艺简单、回收效率高,且回收的金属和非金属资源附加值高、无二次污染物排放,具有显著的经济效益和环境效益。
本申请涉及工业大数据的数据处理技术领域,提供一种工业数据选择方法、装置、计算机设备和存储介质。本申请通过将编码不一致的特征根据第一父代个体和第二个体的预测准确度的相对大小形成第二部分特征子集,使得预测准确度越高的父代的基因被子代继承的可能性更大,能够尽可能让子代获得更优的基因,让整个种群更快的朝着好的方向优化,提高了优化速度,同时保留一定的灵活性,从而快速有效的对工业数据中的关键特征进行准确的提取。
本发明公开了一种废旧锂电池回收处理的无氧裂解系统,包括:预处理系统、裂解炉系统、裂解气净化系统、热风炉系统、烟气处理及排放系统、固体处理与分选系统;预处理系统接入裂解炉系统,烟气处理及排放系统接入裂解炉系统,固体处理与分选系统接入裂解炉系统,裂解炉系统、裂解气净化系统、热风炉系统三者串联连接。本发明采用隔氧式外加热对废旧锂离子电池进行加热,实现对预处理后的废旧锂离子电池的无氧裂解处理,本发明采用循环式加热方式,使得系统更加节能、环保,同时系统能连续运行,工作效率高。系统烟气排放环保,最终的有价金属锂钴镍等资源回收更为彻底,经济效益更高,实现废旧锂离子电池的减量化、无害化及资源化处理。
本发明公开了一种再生型锂离子正极材料的制备方法。制备步骤包括:1)将废旧锂离子电池的正极极片,浸泡,搅拌,收集沉淀物;2)将沉淀物烧结,后酸浸处理,得浸出液,萃取,得萃取液;3)在浸出液中加入镍、锰和钴盐,调整溶液中Ni2+、Mn2+和Co2+的摩尔比,得调整液;4)加入氢氧化锂溶液,共沉淀,得悬浊液,调整悬浊液pH值;5)将上述调整pH值后的悬浊液进行水热反应,收集沉淀物,得再生前驱体;6)将再生前驱体煅烧,得再生型锂离子正极材料;其中,在步骤3)的调整液中加入有机溶剂。该再生型锂离子正极材料具有更好的电化学性能,该制备方法无需增加新的设备及改变回收技术路线,简单易行。
本发明公开了一种用于有色金属冶炼的废气处理系统,包括冷却仓、进气管、冷却管、抽水泵、第一进水口、第一出水口、第一隔板、滤网、活动杆、把手、封板、第二隔板、第二出水口、溶解仓、排气口、第二进水口、连通管、弹簧、滑动柱、套环和固定栓。本发明的有益效果是:通过在冷却仓内部设置螺旋结构的冷却管,使得高温气体在通过冷却仓时,能够充分进行预冷却。通过在滤网一端设置活动杆,且活动杆通过弹簧与溶解仓活动连接,使得烟尘内的颗粒物能够通过滤网进行收集,通过拉伸活动杆,从而抖动滤网,能够将收集后的堆积烟尘,抖动到滤网的一端。装置具有处理效率高,使用更安全,操作更方便的特点。
本发明属于工业固废资源化利用领域,尤其涉及一种从冶金矿渣中回收金属制备电池正极材料的方法。本发明提供一种从冶金矿渣中回收金属制备电池正极材料的方法,包括如下步骤:(1)采用酸浸的方法分别从含金属钴、镍、锰的冶金矿渣提取出钴溶液、镍溶液和锰溶液;(2)将三种金属提取液混合后与六亚甲基四胺进行水热反应,反应后收集固体得到NixCoyMn1‑x‑y(OH)2前驱体;(3)NixCoyMn1‑x‑y(OH)2前驱体进行混锂煅烧得到镍钴锰酸锂三元电池正极材料。本方法操作简单,能有效地从冶金矿渣中回收钴镍锰资源并再生为镍钴锰酸锂三元电极材料,可应用于工业冶金矿渣的资源化回收。
本发明公开了一种水系空气电池及利用其分离回收钴酸锂中锂钴元素的方法、应用。所述水系空气电池,由正负极电解液、正负极材料和中间反应仓电解液组成,其中,正负极电解液均为锂盐或钠盐溶液,中间反应仓电解液为含Li+和Co2+的溶液,正极材料为氧气,负极材料为锂盐或钠盐,负极材料反应电位低于正极材料的反应电位,且高于析氢电位;所述中间反应仓电解液通过阴阳离子膜与负正极电解液连接,所述正负极材料分别置于正负极电解液中。在水系空气电池基础上,通过自发的氧化还原‑双离子耦合过程,实现锂、钴离子的分离。该方法不使用沉淀剂、绿色环保,可降低成本。此外,在放电回收锂、钴离子的同时能释放电能。
本发明公开了一种脱硫剂及其脱除废铅膏中硫制备零碳冶炼前驱体的方法,所述脱硫剂为可溶性钼酸盐,对废铅膏进行脱硫。稀酸酸浸‑pH控制化学沉淀联合工艺法制备零碳冶炼前驱体,包括以下步骤:(1)硝酸对脱硫铅膏进行酸浸,得到浸出液与不溶性的PbO2;(2)碱液对浸出液pH进行调控,发生化学沉淀反应,生成PbMoO4。本发明操作简单、无环境污染,废铅膏的脱硫效率为99.13wt%,铅以高纯PbO2(纯度93.7%)和高纯PbMoO4(纯度98.3%)的形式回收,总回收率为99.97wt%,解决了传统高含碳冶炼前驱体(草酸铅,柠檬酸铅,碳酸铅)在后续冶炼过程中带来碳排放的问题。
本发明公开了一种用于回收废旧电路板中的金的脱金装置,包括支架、以及安装在支架上的脱金反应器和滤液处理槽,所述脱金反应器底部设出液口,该出液口连接一金箔过滤器,所述金箔过滤器位于滤液处理槽内,脱金反应后的溶液和固态物进入金箔过滤器中过滤,所述滤液处理槽的下部设废液出口,其底部设出料口。该脱金装置结构简单,制备原料常见且廉价,操作方便,无污染,适宜规模化生产。
本发明公开了一种从废旧锂电池正极料物理分离钴酸锂的清洁生产方法,包括以下步骤:1)首先将废弃锂电池正极料进行一级破碎,破碎的粒度控制在16mm以下;2)再将上步得到的物料进行二级破碎,破碎的粒度控制在4mm以下;3)将上步得到的物料筛分;4)将筛余物粉碎,并进行筛分。采用本方法分离并回收废弃锂电池正极料中的钴酸锂与铝片,整个工艺过程为物理性分离,对环境不产生污染。分离过程不需添加化工辅料,生产成本低,同时钴和锂都获得再收。
本发明属于重金属固废处理领域,公开了一种水热与氧化协同提取电镀污泥中铬的方法。将原始电镀污泥或经过预处理的电镀污泥与碱液置于水热釜内混合搅拌;将得到的混合体系密封,通入一定压力的氧气或空气,或者加入氧化剂,保持搅拌保温进行水热反应,所得反应体系静置冷却后抽滤,滤液为高浓度铬液,固体经洗涤后为无毒矿物。本发明在保证铬具有高浸出率的基础上,可以将温度降至300℃以下,既降低了能耗,也延长了设备的使用寿命。且不需要投入石灰、白云石等填料,有利于废物的减量化。
本发明提供了常温嗜酸浸矿菌及高砷高品位原生硫化铜矿生物搅拌浸出方法。常温嗜酸浸矿菌为氧化亚铁硫杆菌DBS02(Thiobacillus?ferrooxidans?strain?DBS02),保藏于中国典型培养物保藏中心,保藏号为CCTCC?No.M2010323。所述方法是:将矿石碎磨至80目,加入含有嗜酸浸矿菌的生物搅拌浸出系统内进行生物搅拌浸出,矿浆浓度为15~25%(g/ml),外加4~10g/l亚铁离子,稀硫酸调节pH值稳定于1.8~2.4,通过8~10天的浸出,矿石中铜的浸出率达到84%以上。本发明能有效浸出高砷高品位原生硫化铜矿的铜,无需超细研磨,具有高效节能、环保的优点。
本发明公开了一种从废旧线路板选择性回收锡或铅的方法,包括如下步骤:S1.将去除电子元件的废弃线路板破碎;S2.将破碎后的废弃线路板置于电解槽体中,当选择性回收锡时,加入盐酸溶液;将惰性电极分别置于电解槽的的阳极室和阴极室中;设置电压为6~8V,进行电化学反应浸出,收集反应液和析出物,反应液用硝酸稀释保存,析出物用硝酸溶解保存;当选择性回收铅时,将盐酸溶液替换为等体积的体积比3:1的盐酸和过氧化氢混合溶液。本发明根据不同辅助液下铅、锡阴阳极反应液表征结果和铅、锡在电极阴极处的析出含量情况,找出了有效分离废弃线路板中金属铅或锡的方法,具有较大的应用前景。
本发明公开了一种从废蚀刻液中回收99.98%的铜粉,并对这些铜粉进一步加工制备来获取99.999%的阴极铜的方法。该方法首先将废蚀刻液在装有硫酸铜溶液中的电渗析槽中进行渗析,蚀刻液中的铜离子进入硫酸铜溶液,从而获取高浓度的硫酸铜溶液,接着将这部分高浓度硫酸铜溶液导入电解槽进行电解,获取高纯度的铜粉。然后将这些高纯度铜粉压块,铜砖块盛放在钛材料的导电框中作为阳极,阴极采用纯钛板,在电解槽中精炼,由此可在电解槽的阴极上获取到纯度为99.999%的阴极铜。该方法属于老化蚀刻液提取铜并再生回用的领域,对比传统的工艺,产品附加值高,铜粉和阴极铜都可作为产品,并且有流程短、设备少和能耗低的特点,且整个过程中不引入别的试剂,也不会有中间产物具有污染性,能达到环保的要求。
中冶有色为您提供最新的广东广州有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!