本发明涉及从含镍硫化物原料例如硫化镍精矿或矿石加工镍产品的方法。根据本发明,在大气条件下在氯化钠和氯化铜(II)水溶液中对原料进行浸出。在作为过程中一个步骤的氯-碱电解中获得浸出镍和加工产品所需的反应物例如氯、氢和氢氧化钠。
本发明涉及一种利用含水介质提取难熔矿物中所含的贱金属和贵金属的方法。目的是用一种包括导致其难熔基体增溶的简单而强大的预处理方法来代替目前在智利和全球采矿或经典浸出中提取矿物的“浮选/熔炼”方法。该方法包括将矿物(Cu2S、CuS、CuFeS2、Cu5FeS4、FeS2、FeAsS、NiS、(Ni、Fe)xSy)研磨成合适的大小(2.5厘米),然后将特定剂量的固体试剂在旋转的凝聚鼓中混合,然后根据含金属的固体中所含脉石的类型,添加微酸性的水以获得规定的水分含量(5‑8%),从而形成凝聚剂,该凝聚剂将形成堆,然后使其静置持续几天(20‑60天),在此期间,将产生将难熔基质转变成高度可溶固体所需的条件。最后,进行适当调节的灌溉,从而通过简单的水洗就可提取金属。本质上,该方法在常规浸出工艺之前的步骤中实现了将原始难熔矿物最大程度地转化为高可溶性固体盐的过程。因此,金属将以比原始基质高得多的溶解度包含在固体中,因此其溶解将更快,更有效并且需要消耗的消耗品和试剂最少。
本发明涉及属于物种氧化硫硫酸杆菌(ACIDITHIOBACILLUS THIOOXIDANS)的名为LICANANTAY的分离的化能无机营养菌,保藏于德意志微生物保藏中心-DSMZ,保藏号DSM 17318,并且涉及它以纯化形式或以混合物形式的应用,该应用中包含它以进行矿物的或硫化的金属品种精矿生物浸出工艺。这种LICANANTAY菌株DSM 17318在原生和次生硫化的矿物中都具有硫氧化活性,特别是对于黄铜矿,铜蓝,斑铜矿,辉铜矿,硫砷铜矿和砷黝铜矿而言。
在溶剂萃取沉降器装置中,出口箱(11)包括竖直地布置在井筒(12)内的内管(18),内管与井筒(12)的侧壁(13)间隔开,以在内管和井筒之间限定中间空间(19)。内管(18)具有内部空间(20)和开口(21),所述开口位于内管的靠近底部的下部处,以形成用于使重溶液相流到内部空间(20)的流动路径。井筒(12)包括第二出口(22),所述第二出口与排出出口(17)分开并且位于排出出口(17)的高度水平的上方。第二出口(22)在靠近井筒(12)的上端的位置以及在所述一层夹带的轻溶液相(5)的高度水平处通过侧壁(13)而通向中间空间(19),用于从中间空间排出所述一层夹带的轻溶液相。重溶液相(4)经由排出出口(17)排出。所述一层夹带的轻溶液相(5)经由第二出口(22)排出。
一种处理富铁的含稀土矿石的方法,其包括冶炼矿石以将矿石中的稀土氧化物矿物富集至炉渣相中并从炉渣提炼稀土氧化物矿物的步骤。
本发明涉及一种制备具有高稳定性和纯度、粗粒径大于800μm的单分散阴离子交换剂凝胶的方法,制备从一种具有溶胀指数2.5至7.5的单分散珠状聚合物开始,包括一个以上后续进料过程,在聚合反应步骤之间没有任何分离,然后改性得到所述阴离子交换剂。
本发明涉及从废催化剂中回收贵金属的方法。更具体而言,本发明涉及从包含贵金属的汽车废催化剂或氧化铝废催化剂中回收铂系金属的方法。本发明的从废催化剂中回收贵金属的方法包括以下步骤:向废催化剂中加入含水分的还原剂;将所述废催化剂粉碎至颗粒尺寸小于20微米;通过湿法过程提取金属;以及过滤所述贵金属。所述粉碎之后,用王水溶解催化剂,过滤和洗涤以除去载体,并且浓缩酸溶液。在浓缩步骤之后,向溶液中加入氯化铵以沉淀贵金属,并过滤沉淀的金属。向残余物中加入铝屑以沉淀贵金属,并过滤和回收沉淀的金属。
本发明提供了一种通过含亚铁的溶液的受控氧化产生含三价铁的溶液的工艺,所述工艺包括:提供至少含亚铁离子的溶液;用一种或更多种含二氧化硫和氧气的进气处理所述溶液以将所述亚铁离子氧化为三价铁离子,其中二氧化硫气体的供给速率是限制氧化速率的;以及控制所述溶液中溶解氧的浓度处于最佳值。
本发明整体涉及一种压滤机,该压滤机用于只须通过在压力作用下使处于液态与固态的浆穿过滤布并且将固体与浆分离来过滤液相滤出液。更具体而言,本发明涉及一种精密化学用的高效压滤机,其中将滤出液通道改进成具有高效率来增强过滤/清洁功能,将滤布的周边制成不透水式以防止滤出液在压紧作用下泄漏,由此压滤机能够更好地执行清洁操作,甚至通过使用干燥的压缩空气来干燥所述固体。为此目的,本发明的压滤机包括支承块(10)、过滤块(12)以及介于所述支承块与过滤块之间的滤布(11),其中,所述支承块各带有位于一侧的上角部中的水/空气供应通孔(32)、位于另一侧的上角部中的浆供应通孔(34)、位于一侧的下角部中的水/空气/滤出液返回通孔(36)、以及位于中心处的用于容纳浆并将浆模制成糕状的供应室(38);所述过滤块各带有与所述支承块的供应室相对应的供应循环通路(54)和由多个用于透过滤出液的流体流通道槽(51)所形成的滤板(50)。优选地,只在所述滤板的一侧(A)的下端形成多个水/空气/滤出液出口(58),只在滤板的另一侧(B)的上端形成多个水/空气/入口(56)。
溶剂萃取沉降槽设备,包括用于由互不混溶的溶液制备分散体的混合单元(1)和具有进料端(3)和出料端(4)的沉降槽(2)。沉降槽布置为在分散体流向出料端的同时将溶液相从进料端所供给的分散体分离。该设备还包括进料装置(5),其定位在进料端(3)处,用于将混合单元(1)所制备的分散体供给到沉降槽(2)。进料装置(5)包括细长的进料槽(6),其具有第一端(7)和第二端(8),第一端用于从混合单元(1)接纳分散体。进料槽(5)与沉降槽(2)的进料端(3)并排地延伸。进料槽(5)具有锥形管的形式,锥形管具有朝向第二端(8)收敛的截面和朝向第二端(8)升高的倾斜底部(9)。多个进料管(10)距彼此一定距离沿进料槽(6)的长度布置,每个进料管(10)具有:第三端(11),其在底部(9)处通向进料槽的内部空间,以从进料槽接纳分散体;第四端(12),其通向沉降槽(2)以把分散体引导到沉降槽。
本发明相应地提供一种从含银卤化物溶液中回收银的方法,包括以下步骤:(a)提供包含弱阴离子交换树脂的离子交换柱;(b)将含银卤化物溶液引入离子交换柱,以将银吸收到弱阴离子交换树脂中;(c)用第一清洗溶液清洗负载的离子交换树脂以洗掉所吸收的锌和任选地至少部分铜;(d)用第二清洗溶液清洗负载的离子交换树脂以洗掉剩余的铜;(e)任选地用第三清洗溶液清洗负载的离子交换树脂以洗掉所吸收的铅;和(f)用洗脱液洗脱负载的离子交换树脂以从树脂中除去银,并得到含银的溶液。
本发明涉及一种由金属框架强化的复合物管,其被用于输送油和气、酸、碱产品、饮用水和工业用水,并且还用于输送腐蚀性和中性矿浆,例如在地下对于岩石进行滤出时使用。所要求保护的是:一种金属-聚合物强化管,包括焊接的金属框架和具有基于非晶相的分子结构的聚合物基体。金属-聚合物强化管通过如下方式制造:挤压模塑并同时将复合物熔体和强化金属框架送入到模具腔,随后对模塑成型的管的内表面和外表面进行集中冷却。本发明所解决的技术问题是,提高了金属-聚合物强化管的质量和径向的耐受力限制,提高了用于制造所述管的处理过程的生产率,以及还提高了由生产出的管所构造的管线的强度和技术效果。
本发明涉及用于在对熔融锍进行造粒时浸出金属的方法,包括如下步骤:将熔融锍作为下落的流供给到造粒室(30)中,将液体射流喷洒在熔融锍的流上以雾化该锍,并且冷却如此形成的锍颗粒。该液体射流包含含有水和硫酸的酸溶液,使得当液体射流接触熔融锍时该酸溶液开始从该熔融锍浸出金属。可使来自造粒的产物溶液的一部分循环到液体射流以增加该溶液中的金属含量和降低其酸含量。
本发明涉及一种不锈钢合金,特别是一种含铁素体-奥氏体基体且具有良好抗腐蚀性能、结构稳定性和热加工性的双相不锈钢合金,本发明所述双相不锈钢合金包含(重量百分比)至多0.03%的C,至多0.5%的Si,24.0-30.0%的Cr,4.9-10.0%的Ni,3.0-5.0%的Mo,0.28-0.5%的N,0-3.0%Mn,0-0.0030%的B,最多0.010%的S,0-0.03%的Al,0-0.010%的Ca,0-3.0%的W,0-2.0%的Cu,0-3.5%的Co,0-0.3%的Ru,平衡量的Fe以及不可避免的杂质,并且铁素体体积百分含量为40-65%,铁素体相和奥氏体相的PRE值在46-50之间,奥氏体相的PRE(W)值与铁素体相的PRE(W)值之间比值的优选关系为0.90-1.15,优选为0.9-1.05。
本申请涉及从金属硫化物中回收金属的方法,该方法包括使金属硫化物与含有硫酸铁和具有硫代羰基官能团的试剂的酸性硫酸盐溶液接触,以生产含有金属离子的富液,其中,相对于不含所述试剂的酸性硫酸盐溶液,所述酸性硫酸盐溶液中的试剂的浓度足以提高金属离子提取的速率。
在此描述了一种用于从氯化物液体中回收盐酸和金属氧化物的方法。该方法包括:提供一种包括该金属的氯化物液体并且将该液体与一种基质溶液混合以产生一种反应混合物,其中该基质溶液辅助该金属的氧化/水解以及HCl的产生。在一个优选的实施方案中,该基质溶液包含处于不同的水合阶段的氯化锌并且将一种含氧气体加入到该混合物中。因此,本发明披露了一种方法,其中改进为将一种液体与一种基质溶液混合,其中该溶液辅助该金属的水解以及HCl的产生。在一个优选的实施方案中,该反应器为一个柱式反应器。还披露了该基质溶液的用途以及一种用于回收盐酸并且用于使金属氧化/水解的反应器。
一种通常用于任何其他含锰的工业废料的从铁合金生产炉的废料的处理渣中获得电解锰的工艺方法,通过以下工序:硫酸盐化、浸出、净化、调和及电解而产生适合已知的电解工艺的硫酸锰溶液,从而得到电解锰。
在含金属矿石的加压氧化期间减少在加压氧化高压釜和/或相邻回路中含CaSO4和/或Fe2O3沉积物的形成。将含金属矿石与水组合以产生含水浆料,将含水浆料加热并引入高压釜中。所述方法包括提供抑垢剂,所述抑垢剂不含有机聚合物并且包含:根据式(I):(XPO3)m的无机磷酸盐,其中X为Na、K、H,并且m为至少约6;根据式(II):Yn+2PnO3n+1的无机磷酸盐,其中Y为Na、K、H,并且n为至少约6;有机膦酸系(III);或其组合。所述方法包括将所述抑垢剂与含金属矿石、水和含水浆料中的至少一种组合以减少垢的步骤。
本发明涉及一种在碱金属盐浴中分解超合金、特别是超合金废料,然后回收贵金属的方法,回收钨、钽和铼之类的非常贵重的金属。
公开了接枝共聚物、包括接枝共聚物的组合物、中间物质和相关方法,其中所述接枝共聚物包括第一聚合物组分,其包括1,1‑二取代‑1‑烯烃化合物(优选亚甲基丙二酸酯化合物)并且接枝到第二组分。所得接枝共聚物可为亲水性或水溶性。所述第二组分优选为亲水性组分。
本发明涉及用于回收贵金属的方法和设备。因此,本发明提供一种用于从原料中获得贵金属组合物的连续方法,所述方法包括:(i)在等离子体炉中加热原料以形成上部渣层和下部熔融金属层;(ii)移出渣层;(iii)移出熔融金属层;(iv)使所移出的熔融金属层凝固;(v)将凝固的金属层破碎以形成碎片;和(vi)从所述碎片中回收贵金属组合物;其中所述原料包括含贵金属材料和捕集剂金属,所述捕集剂金属是能够与一种或更多种贵金属形成固溶体、合金或金属间化合物的金属或合金。这提供了高的贵金属回收率。所述设备包括等离子体炉、能够连续浇铸所述熔融金属层以形成凝固板的浇铸台、破碎装置和用于从碎片中回收富含贵金属的合金的分离装置。
本发明涉及一种用于液液萃取金属的系统,能够显著降低在萃取不同阶段所需要的有机溶液量。根据本发明,选择萃取系统的一个步骤中的沉降单元也作为有机溶液储存槽和泵送槽。
本发明公开一种选择性回收至少一种亲硫族元素CPM的方法,所述CPM从包含CPM和一种或多种非亲硫组分元素NCE的材料中回收,所述方法包括使所述材料与含有浸液的碱性溶液接触,以便选择性地从所述材料中浸出CPM,以产生含CPM浸出液的和含NCE残余物,所述浸液包括氨基酸或其衍生物的;以及从所述浸出液中回收CPM。
根据本发明的示例性方面,提供了一种通过结合干燥、热气化以及氨和磷回收的单元操作以有效方式从污水污泥和动物粪便中回收营养物和能量的方法。另外,提供了由回收的氨和磷中定制的肥料。
本发明涉及一种在制锌过程中控制连续金属去除的方法和装置,其中金属去除是在一个或多个反应器(11a-c)中进行的,与反应器相连地,测量氧化还原电势(16a-c)及酸度和/或碱度,并根据测量结果,朝所需方向调节金属去除的工艺变量(17a-c)。按照本发明,在反应器外部与反应器出口管相连,根据反应器中产生的淤浆进行氧化还原电势的测量(16a-c),并以预定间隔净化测量仪器(16a-c)。
提供了一种制备用于贵金属回收的废贵金属固定床催化剂的方法,包括:a)将所述催化剂加入苛性碱溶液中以洗涤所述废催化剂并制备具有碱性pH的洗涤浆料,其中所述废催化剂已经与氯铝酸盐离子液体催化剂接触,并且其中所述废催化剂包含5至35重量%的氯化物;和b)过滤所述洗涤浆料,并收集:i)滤饼,其中所述废催化剂中的至少70重量%的氯化物被除去和所述贵金属被保留,和ii)洗涤滤液。还提供一种滤饼,其包含具有40至75重量%的固体、25至小于60重量%的滤饼水分含量、0.1至1.5重量%的总贵金属以及0至小于4重量%的残余氯化物含量的洗涤固结饼。
描述了用于从废催化剂中回收铂族金属的方法。所述方法包括粉碎所述废催化剂以获得包含具有预定粒度的颗粒的催化剂粒状材料。所述方法包括通过使所述催化剂粒状材料与含氯气体接触以使所述催化剂粒状材料在预定温度下在反应区中进行氯化处理预定时间段。所述方法还包括对所述反应区中的所述含氯气体施加电磁场以提供氯的电离;由此引起铂族金属和氯离子之间的化学反应,并在所述反应区中提供挥发性含铂族金属的氯化物产物。此后,冷却所述挥发性含铂族金属的氯化物产物,以将所述产物转化为固相含铂族金属的材料。
中冶有色为您提供最新的其他有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!