本发明涉及从含钴材料,特别是从含钴锂离子二次电池、废电池或它们的废料中回收钴。公开了一种从含钴材料中回收钴的方法,所述方法包括以下步骤:提供转炉,将铜锍、铜镍锍和不纯合金中的一种或多种以及造渣剂装载到转炉中,并注入氧化气体,以便在氧化条件下熔炼装载料,从而获得包含粗金属相的熔浴和含钴炉渣,以及将所述粗金属与所述含钴炉渣分离,其特征在于将含钴材料装载到转炉中。该方法特别适用于使含钴锂离子二次电池再循环。钴被浓缩在有限量的转炉渣中,可以从所述转炉渣中经济地回收钴以及其它元素例如铜和/或镍。
本发明涉及氧化矿特别是锌矿浸出的方法。矿石中的有价值金属至少部分是硅酸盐形式的,矿石经历酸性浸出阶段,在该条件下硅酸盐分解,且有价值金属离子进入溶液中。在浸出过程中,硅酸根离子先溶解,但同时分解并作为二氧化硅沉淀。
本发明涉及从含有黄铁矿的硫化铜矿石中回收铜的方法。根据该方法,矿石进行研磨,在常压条件下通过三价铜,浸出到含有硫酸的溶液中。当硫化铜浸出时,三价铁还原为二价,在浸出过程中通过氧氧化回三价。在密闭的反应器中进行浸出,从溶液中上升的并且聚集到反应器上部的不溶解气体循环回溶液、固体和气体的悬浮液中。在存在二价和三价铁并优选具有溶解的铜(作为催化剂以促进浸出)的条件下进行浸出。调整条件使得矿石的黄铁矿基本上不溶解。
本发明涉及从含铁和含砷的溶液中将砷作为臭葱石除去的方法。根据所述方法,首先将砷沉淀为砷酸铁并随后将其水热加工成结晶臭葱石。
金黄色青铜外观制品、多层基体、相关方法及其用途,特别是用于造币坯。制造具有金黄色青铜外观的制品的方法包括在退火温度下对多层基体进行退火停留时间。多层基体包括与铜层和后续锡层邻接的芯。退火温度和退火停留时间根据彼此控制为使锡层能够扩散到铜层中并制造包括具有金黄色外观的经相互扩散的外部青铜层的经退火的基体。锡层厚度取决于铜层厚度使得经相互扩散的外部青铜层具有约8%wt至约15%wt之间的锡含量。芯具有足够低的镍含量以减少或防止在退火期间在芯附近形成包括锡和镍的金属间化合物。
本发明涉及锆合金,除不可避免的杂质外,包含0.02到1%的铁,0.8%到2.3%的铌,少于2000ppm的锡,少于2000ppm的氧,少于100ppm的碳,5到35ppm的硫和在总量中少于0.25%的铬和/或钒,铌含量与铁含量和任选地连同铬和/或钒含量的比率R小于3,本发明可用于核反应堆部件。
一种用于分离彼此基本上不相溶的不同密度的两种液体的混合物的装置,包括:具有凹槽的中空渗透体,所述凹槽用于接收第一流体,所述第一流体可以从凹槽流经渗透体到渗透体的外部。一个壳体围绕渗透体的外部并与渗透体的外部隔开。壳体具有用于第二流体的入口和用于第一流体和第二流体的混合物的出口。在渗透体的外部和壳体之间的空间中设置有一个或多个挡板,其在渗透体的外部和壳体之间的空间中限定混合通道,使得第二流体可以进入壳体入口,并通过混合通道流向出口,同时在渗透体的外部拾取流体。
本发明涉及一种在过饱和状态下存在水合和/或非水合盐的固‑液‑固湿法冶金方法,该方法通过有意和重复地应用干燥和润湿步骤来实现,增强了矿物或精矿上的化学和物理现象,从而在硫化物的非化学计量分解及其随后与氯化物的沉淀中引发铜的结晶、再结晶和释放。本发明由3个步骤组成,称为:(a)润湿,(b)干燥和过饱和,(c)洗涤和再润湿,这些步骤在20‑40℃范围内的温度下进行而不考虑氧化还原电位,水和酸的消耗量最小,无需添加氧。该方法允许减少水和酸的消耗,因为硫化物的转化可只在水合盐的存在下和/或少量添加酸与水的情况下进行。此外,本发明允许在附聚和/或附聚‑固化步骤中减少水的使用,因为当水合盐与矿物混合时,水合盐的水分子润湿矿物,减少在润湿和附聚和/或固化步骤中应添加的水量。本发明的方法也可应用于硫化物贱金属,例如镍、锌、钴、铅、钼等,而不考虑在砷的存在下出现的硫化物矿物的通常杂质。
本发明涉及一种使用金属溶剂来纯化材料的方法。本发明包括一种利用级联过程来纯化硅的方法。在级联过程中,当硅移动经过所述纯化过程时,其接触纯度渐增的溶剂金属,所述纯度渐增的溶剂金属以相反的方向移动经过所述过程。
本发明的方法涉及从非负载型的废催化剂中移出金属。对催化剂进行浸取反应。钒以沉淀的形式移出,而对含钼和镍的溶液继续进行萃取步骤以移出这些金属。可交替地通过沉淀法移出钼。
一种从含铜和铁的硫化矿石中回收铜的方法,包括以下步骤:在反应容器中使含铜硫化矿石与二氧化硫气体反应以形成单质硫、铁氧化物和铜硫化物,将包含铁氧化物和硫酸铜的固体与反应混合物的液相分离,用含水或稀硫酸的水溶液使干燥的固体浸出并使硫酸铜溶解,从溶解的硫酸铜中回收铜。
本发明涉及用于迅速冷却炼铁厂烟气的热交换器(1),其特征在于,该热交换器包括:至少一个模块(100)的支撑结构(2),所述模块又包括烟气的入口歧管(3)和烟气的出口歧管(4),入口歧管和出口歧管相互对置并对准;多块面板(5),这些面板在入口歧管(3)和出口歧管(4)之间延伸,并且相互间隔一定距离地相互重叠,其中成对的相邻面板(5)限定出烟气的流动通道(6),该流动通道由肩部(7)侧向地关闭,并在相对端部处分别具有与入口歧管(3)连通的入口孔(8)和与出口歧管(4)连通的出口孔(9);与面板(5)相关联的冷却流体循环管道(10);用于流动通道(6)中的一个或多个流动通道的入口孔(8)的第一选择性关闭器件(14);以及用于流动通道(6)中的一个或多个流动通道的出口孔(9)的第二选择性关闭器件(15),其中,流动通道(6)中的每一个由相应一对肩部(7)侧向地关闭,这对肩部中的至少一个肩部为可拆卸式肩部。
本发明描述了一种通过电化学分解从高温合金回收贵金属的方法,两个电极均由高温合金形成,电解电流的极性以0.005-5Hz的频率转换。
一种用于在包括多个电极、含有被流体炉渣覆盖的液体铜脚料的交流型等离子体电弧电炉中,从含有处于大于或等于零的氧化态的非铁金属的冶金残渣中回收非铁金属,尤其是铜、镍和钴的方法,该方法包括至少一个熔融-还原阶段A,其包括将含有非铁金属的冶金残渣装料至等离子体电弧电炉中所容纳的脚料上、在液体炉渣中或在炉渣-金属浴界面处熔融冶金残渣、还原至少非铁金属至氧化态零、以及通过注入惰性气体、优选氮气和/或氩气,强烈搅拌铜脚料,以避免渣壳形成并加速还原反应且促使铜混溶非铁金属进入铜脚料。
本发明公开了一种从氧化矿石、特别是从多金属结核中回收有价值金属的方法。所述方法适用于回收Cu、Co、Ni、Fe和Mn,上述金属是这种多金属结核中受关注的主要金属。在众多方法中,本发明的方法的特征在于,Fe的处理,Fe在溶液中溶解并保持在所述溶液中直到结晶步骤,而不是在更早的阶段除去。得到混合的Mn‑Fe残渣,其在热处理之后提供适用于钢或锰工业的Mn‑Fe氧化物。获得了优异的Cu、Co和Ni的收率,而Fe与Mn一起浸提且增值。
通过将氧化铝颗粒注入熔融铝金属的浴(30)中,以及将由碳组成、含碳或产生碳的碳材料注入浴(30)中产生含固体碳化铝的产品的块体。将熔融铝金属的浴(30)维持在加热并使碳与浴中的熔融铝反应的过热温度以产生固体碳化铝,所述固体碳化铝与氧化铝混合形成块体(36),所述块体(36)含有包埋的气体和包埋的熔融铝金属并且体积密度或表观密度比铝的体积密度或表观密度小。使该块体在浴的上表面积聚为含固体碳化铝的产品的块体。碳材料为碳氢化合物材料或由碳氢化合物材料经热解、分解或裂解所产生。
本发明涉及一种从矿物或精矿中提取金属的方法,包括下列步骤:在存在合适的助熔剂材料以降低包含目标金属的混合物的熔融温度的条件下,在加热的处理容器中在用于形成均匀熔体的最低温度下使所述包含目标金属的混合物熔融,以制备熔融的离子基质,其中该熔融的离子基质主要为无定形的并且为吸湿性的;以及冷却所述基质。
本发明涉及一种从燃料电池例如PEM燃料电池堆,DMFC燃料电池,催化剂涂层薄膜(CCM),薄膜电极组(MEA),催化剂膏等的含氟组件中富集贵金属的方法。该方法基于一种可选地多步的热处理工艺,包括燃烧和/或熔融工艺。其可使富集贵金属廉价而简单。在对含氟组件进行热处理的过程中,产生的氟化氢被无机添加剂结合,这样就没有有害氟化氢放出。该方法可以用来回收在燃料电池,电解槽,电池等中作组成部分存在的贵金属。
本技术提供了一种用于回收电弧炉(EAF)粉尘的示意性装置以及使用相关装置的方法。该装置具有联接至分离空间的热控制区域,并且包括至少一个磁体和冷却区域。热控制区域在足以将至少一些EAF粉尘转化成气态锌和一种或多种附加金属的混合物的温度下操作。磁体从气态锌和一种或多种附加金属的混合物中分离富含铁的材料,并且冷却区域冷凝气态锌。
用于获得锂化合物和中间体化合物的方法,所述方法包括以下步骤:a)使铝硅酸盐粒子(例如α‑锂辉石)与至少一种氟化合物(例如HF、NaF或其它氟化合物)接触;b)对混合物进行搅拌,升高温度直至达到合适的温度;c)对步骤b)的混合物进行至少一次沉淀和过滤处理;以及d)对锂化合物进行回收。该方法可包括使用浓度在5%v/v至30%v/v之间的HF或浓度在5%w/v至30%w/v之间的NaF;在0.9%w/v至14.4%w/v之间的步骤a)的固/液比;在29μm至200μm之间的粒径。该方法的最终的锂产物可以为碳酸锂或氟化锂。
一种方法包括使用以第一电磁频谱为特征的输入辐射来辐射储能设备,并检测由储能设备反射或反向散射的输出辐射。该方法还包括确定输出辐射的第二电磁频谱,并将第二电磁频谱与参考电磁频谱进行比较。该方法还包括基于第二电磁频谱与参考电磁频谱的比较来生成分类指令。
本发明涉及一种从含钼的硫化物材料中回收钼的方法。在铁化合物和嗜中温性或嗜热性铁氧化微生物的存在下,所述材料与浸取液接触,然后,通过控制溶解的三价铁与溶解的钼的摩尔比来实施浸取过程。较优地,使用大量的、摩尔过量的溶解铁。生物浸取溶液中存在高浓度的三价铁能使铁氧化微生物生长并使铁氧化,而且也能实现在高达4.4G/L的溶解钼浓度下进行辉钼矿生物浸取。不需要有机代谢物保护细胞免受钼的毒性。以附聚的材料模拟堆积场,其最大溶解速度取决于反应器的结构,浸取速度接近1%MO/天,但是,在悬浮式/搅拌式反应器结构中,浸取速度高达10.2%MO/天,该速度很大程度取决于25℃至40℃范围内的温度。最终从含钼的硫化物矿物中回收钼的程度为89%。最后,从浸取过程的浸取剩余物中回收钼。
本发明涉及用于在废弃的电气和电子设备的循环利用期间剥离焊料金属的装置和方法。本发明提供的用于循环利用印刷线路板的装置和方法可以收集电子部件、贵金属和贱金属以供重新使用和循环利用。所述装置总的来说包括机械焊料去除模块和/或热模块、化学焊料去除模块和贵金属浸沥模块,其中所述模块连接在一起以使电子废弃物从模块到模块连续通过。
一种从组合物中除去金属物种的方法,包括在氢气的存在下,使:A.低聚物混合物料流,其包含部分芳香性聚酯聚合物的单体和至少一种金属物种;或B.熔融的聚酯聚合物料流,其包含部分芳香性聚酯聚合物和至少一种金属物种,和非催化性多孔材料接触以制备处理的料流,所述处理的料流包含减少量的至少一种金属物种。还提供了一种组合物,其包含部分芳香性聚酯聚合物、大于0-少于50PPM的锑和少于40PPM的钴,所述部分芳香性聚酯聚合物在直接酯化熔融相方法中制备并具有至少0.50的IT.V.。还提供了一种组合物,其包含部分芳香性聚酯聚合物、大于0-少于5PPM的钛和少于10PPM的锰,所述部分芳香性聚酯聚合物在酯交换熔融相方法中制备并具有至少0.50的IT.V.。
中冶有色为您提供最新的其他有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!