本发明涉及湿法冶金领域,具体而言,涉及一种短流程制备氧化钪的方法,包括以下步骤:酸溶;萃取:调整料液的酸浓度为0.5‑3 mol/L,采用萃取剂进行1‑6级逆流萃取,控制有机相/水相体积比在30:1‑1:30之间,得到含钪有机相;其中,萃取剂为p227和TBP的混合物;酸洗:配置3‑5 mol/L的无机酸逆流酸洗含钪有机相,控制有机相/水相体积比在30:1‑1:30之间;得到洗涤之后的有机相;以及沉淀和煅烧。在本发明中,通过试剂和工艺的创新,将反萃和沉淀合二为一,省掉反萃及草沉前配料步骤,简化了现有氧化钪的提纯工艺和操作流程,节省了操作成本。
本发明属于湿法冶金领域,公开了一种从镍铁合金中分离镍和铁的方法和应用,该方法包括如下步骤:将镍铁合金溶解于酸液中,过滤,取滤液,得到酸性镍铁溶液;将酸性镍铁溶液调节pH,加热,搅拌,加入铁粉继续加热搅拌,得到海绵镍和沉镍母液;将沉镍母液进行氧化沉铁,得到氢氧化铁渣和沉铁母液;将海绵镍溶于硫酸中,过滤,收集滤液,升温,调节pH,得到硫酸镍溶液。本发明使用酸液将镍铁合金溶解后,通过铁粉将溶液中的镍置换得到海绵镍,沉镍母液氧化后生成氢氧化铁,镍含量低于0.4%,沉铁母液则可以返回浸出段,海绵镍经过酸溶、除杂、蒸发结晶后可得到电池级的硫酸镍产品。
本发明公开了一种高温相转化法处理熔盐氯化废渣的方法,包括以下步骤:(1)熔盐氯化废渣出炉后,在保温下进行固液分离,获得未反应的残渣返回熔盐氯化炉中;(2)获得滤液输送至已预热的高温反应炉中,升温至设定温度,然后加入添加剂进行反应,与氯化钙、氯化镁难挥发氯化盐生成沉淀;(3)将反应产物进行固液分离,获得滤液即为氯化钠为主的熔盐,循环进入氯化炉;沉淀排渣后,可用作建材原料或制磷肥原料。本发明的高温相转化法处理熔盐氯化废渣的方法,采用火法冶金方法处理熔盐氯化废渣,结合生产现状,生产效率比水溶法高,从熔盐氯化废渣中获得新熔盐的简洁方法;能实现熔盐的循环利用,大幅降低熔盐氯化工艺持续补充新盐的成本问题。
本发明公开了一种激光增材制造切变型相变阻裂的方法,包括,采用激光增材制造技术,以具有FCC→HCP马氏体相变的高熵合金粉末为增材制造专用粉末;对所述金属粉末在真空干燥箱中干燥12h,干燥温度为120℃;对干燥好的高熵合金粉末进行增材制造打印,打印参数为:激光功率为400W;扫描速度为800‑1600mm/s;扫描间距为0.09mm;铺粉厚度为0.03mm;基板预热温度为100℃。本发明解决了传统激光增材制造过程中由于熔池内高温度和高应力梯度所导致的热裂纹变形等冶金缺陷产生难题。并在这一研究基础上,将应力诱发马氏体相变抑制增材制造合金中热裂纹的思路扩展到其他增材制造合金体系中,为增材制造无裂纹合金提供新方法。
本发明公开了一种硅酸钠溶液析出含硅水合物的方法,属于冶金技术领域,具体为硅酸钠溶液中加入晶种进行分解,得到含固相的分解浆液,所述固相为含硅水合物。本发明为经济高效实现硅酸钠溶液中硅钠分离、回收硅酸钠溶液中的碱提供了一条全新的技术路线,解决了工业上存在的碱损失大、或产出渣量大、或后续溶液需苛化处理等技术难题。
本发明公开了一种细晶钼板的快速制备工艺,属于粉末冶金技术领域,包括以下步骤:(1)制粒;(2)压制;(3)微波烧结:在微波烧结炉中,真空条件下将生坯快速加热至1500~1600℃并保温10~40min,得到致密度大于95%的烧结钼板坯;(4)交叉轧制:在还原气氛下,将步骤(3)所得烧结钼板坯快速加热至1200~1400℃并保温20~40min,进行开坯交叉轧制,然后进行2~4道次加热轧制,每道次加热温度下调40~60℃,每道次加热轧制的变形量为20~25%,退火处理后,得到晶粒细小且均匀的钼板。本发明采用纳米粉末结合微波烧结技术对钼粉进行致密化,使得烧结坯晶粒细小,平均晶粒度为0.5~2μm,显微组织均匀;采用交叉轧制后晶粒尺寸约为2~4μm,板材微观组织均匀、晶粒细小,板材强度得到进一步提高。
本发明公开了一种高体积分数碳化硅颗粒增强铝基复合材料与铝硅合金的钎焊方法,包括以下步骤:S1、对碳化硅颗粒增强铝基复合材料与铝硅合金的待焊面进行表面清理;S2、在步骤S1处理后的铝硅合金的待焊面预置陶瓷粉;S3、将钎料放置在铝硅合金和碳化硅颗粒增强铝基复合材料的待焊面之间,组成待焊件;S4、保护气氛下,将待焊件加热升温,保温并加压至5~20MPa,继续保温保压,随后随炉冷却至室温。本发明的钎焊方法,利用硬质陶瓷粉辅助金属钎料破除碳化硅颗粒增强铝基复合材料与铝硅合金表面的氧化膜,钎料在碳化硅颗粒增强铝基复合材料与铝硅合金表面得到充分润湿、铺展,促使碳化硅颗粒增强铝基复合材料与铝硅合金的连接表面的冶金结合。
本发明涉及一种利用金属的吸氢膨胀作用,促进金属坯体致密化的方法。所述吸氢膨胀作用是指某些金属块体或金属粉末在氢气气氛和一定温度条件下,吸收氢气产生体积膨胀效应。在刚性模套的约束下,将需要致密化处理的金属坯体周围填充吸氢金属。通过金属吸氢产生体积膨胀效应,从而向内部施压致使金属坯体内部孔隙闭合,进而致密度提升。本发明提供了一种在中低温度、氢气氛下制备高致密度或全致密金属材料的方法。本方法可作为一种新型粉末冶金致密化技术,也可用于消除金属材料内的残余孔隙的方法以提高材料各项性能。
本发明属于冶金及材料科学技术领域,具体涉及一种强化红土镍矿烧结的复合添加剂及其使用方法,其成分如下:镍冶炼废渣55~75wt%;红土镍矿磁选尾渣5~15wt%;废活性炭20~30wt%。所述的镍冶炼废渣为硫化镍熔炼过程产生的熔炼渣;所述的红土镍矿磁选尾渣为红土镍矿直接还原‑磁选产生的非磁性物;所述的废活性炭为烧结烟气脱硫脱硝过程产生的废弃活性炭。本发明通过烧结过程中添入多功能复合添加剂,强化红土镍矿烧结,提高烧结矿强度、降低烧结固体能耗。
本发明公开了一种互相关涡流热成像缺陷检测和层析成像方法及系统。系统可在脉冲、锁相、调频、调相等模式下工作,产生不同的调制信号,通过调制高频交流信号生成不同的激励信号,以对被检对象进行感应加热,同时记录被检对象表面随时间变化的温度信息作为检测数据。采用或产生特定信号作为参考信号,对检测数据与参考信号实施互相关算法,实现脉冲压缩,得到检测数据与参考信号在不同时刻的同相、正交、幅值和相位等匹配信息。从匹配信息中提取特征值,增强检测信噪比,提高内部缺陷检测能力,抑制表面发射率变化,实现被检对象的层析成像。该方法及系统可应用于航空航天、新材料、石油化工、核电、铁路、汽车、特种设备、机械、冶金、土木建筑等领域的装备无损检测、材料表征评估、产品质量控制和结构健康监测。
本发明属于冶金领域,公开了一种高效富集氰化金泥中金的方法,将氰化金泥在催化剂存在下的高温氢氧化钠溶液中通入氧气加压氧化,使Zn、MeS、SiO2、Al2O3和有机物溶解,Cu、Pb、Fe和Ag等完全氧化后进入碱性浸出渣,碱性浸出渣再用硝酸溶解时,使CuO、PbO、Ag2O、Fe2O3和CaO等全部进入溶液,金高效富集于溶解渣中。本发明采用两段选择性溶解过程实现氰化金泥中杂质深度脱除和金高效富集,杂质脱除率大于99.0%,富集物中金的含量在99.0%以上;过程中金始终不溶解,回收率大于99.999%;过滤速度快、技术指标稳定;环境污染小、杜绝了氮氧化物逸出;工艺过程简单、劳动强度小和处理成本低。
含锡锌磁铁精矿生产高炉用酸性球团矿的方法。本发明采用链篦机-回转窑工艺,主要包括铁精矿配加粘结剂进行配料、混匀、润磨、造球、干燥、预热及弱还原焙烧等过程。采用本发明,可实现含锡锌铁精矿中的铁、锡、锌的综合利用,为高炉炼铁提供优质酸性球团矿原料;预热球团抗压强度可达410-1050N/个,AC转鼓小于5%;球团矿抗压强度达2000-3300N/个,残余锡含量0.03-0.07%,残余锌含量为0.025-0.065%,成品球团矿转鼓强度为96.5-98.0%,耐磨指数为1.50-2.50%;成品球团矿冶金性能指标如下:还原膨胀率小于9.0%,还原粉化指数(+3.15MM)>99%。
本发明高温耐磨合金钢由按比例配制的废钢、高碳铬铁、钼铁、钒铁、钛铁、锆、铝、稀土元素和适量的硅、锰脱氧剂经熔炼、扩散均匀化退火与球化退火、淬火、两次以上的回火等工艺流程生产而成。本发明通过多元少量合金化、熔体净化、热处理强化和组织细化,可显著改变合金钢的热稳定性和耐磨性能,并使晶体细化、碳化物细小且分布均匀,同时还在硬度、抗拉强度、冲击韧性、热蚀失重速率、摩擦磨损失重等方面具有优良的综合性能,因此它是钢铁冶金行业中制造高温耐磨导卫轮和轧辊等的理想材料。
本发明涉及铝清洁冶金技术领域,具体公开了一种二次铝灰一段活性可控溶出过程脱除氟氯的方法,具体包括:在低固含条件下,将铝灰分批加入至含有有机物添加剂的水中,控制溶出体系温度并搅拌溶出获得溶出浆液;从溶出浆液中抽提含氟氯水溶液,获得的高固含浆液用于一段活性溶出;向含氟氯水溶液中加入苛性碱,种分析出粗粒氟化盐并进行分离,获得除氟碱液;向除氟碱液中加入除氯添加剂反应,并进行固液分离,将除氯碱液返回一段活性溶出工序。本发明高效安全处置了铝灰中氟、氯、氮和氢等有害元素,减少了氟氯对拜耳法生产氧化铝或后续氧化铝基材料制备的影响,能显著提高二次铝灰综合利用的安全性和氧化铝回收率,便于高值化利用。
本发明属于湿法冶金领域,具体涉及一种从烧结镍合金体中高效湿法浸出镍的工艺。所述烧结镍合金体高效浸出镍的工艺,包括步骤:S1、将烧结镍合金体破碎至5‑15mm;加入硫酸反应后过滤,得到滤液和滤渣;不冲洗滤渣,在滤渣中加入硫酸、双氧水进行氧化浸出,反应结束后过滤,得到一段含镍浸出液和一段浸出渣;S2、在一段浸出渣加入硫酸,振荡30‑60min后取出浸出渣,并在浸出渣中加入双氧水进行二段浸出,得到二段浸出液和二段浸出渣。所述烧结镍合金体包含占物料表面积70%‑80%的钝化膜和占物料重量10%‑20%的中间体。本发明首次针对该复杂的烧结镍合金体物料提出纯湿法浸出工艺,镍浸出指标均在99.9%以上。
本发明公开了一种高弹性模量时效硬化高速钢材料及其制备方法,所述高速钢材料,按质量百分比计,其成分组成如下:Co:15~30%;Mo与W的总量:10~20%,其中W含量<10%;Cr:2~5%;Ni:1~4%;V:1~3%;Mn:1~2%;Nb:0.5~1%;N:0.5~1%,其余为Fe和无法避免的杂质。本发明通过添加Cr、V、Ni和非金属元素N进行固溶强化以及添加氮化物增强颗粒来协同获得高弹性模量时效硬化高速钢材料,本发明制备方法采用粉末冶金法,烧结后,直接固溶‑时效处理即可。本发明所提供的时效硬化高速钢材料弹性模量可提高10~20%,其余力学性能也同步提升。
本发明涉及水泵技术领域,尤其是一种新型的水泵掺汽超空化防汽蚀及降噪装置,是一种利用旁通管将水泵出口处与出水管相连接,将出水管中压力较高的水蒸汽引入到水泵出口处,从而对水泵出口处进行掺汽形成超空化现象,提高掺汽区的局部压力、有效减小空化数、显著减少流经水泵的液体低于介质温度下的汽化压力将形成空泡溃灭进而引起汽蚀现象,与此同时,大大降低因汽蚀而产生的噪声和振动,提高水泵的运行品质。本发明构造简单,加工、安装方便,后期维护成本低等优良特性;并且本发明应用十分广泛,不仅适用于常见的纯水泵、饮用水泵和海水泵等装置,对于采矿、冶金、船舶、制冷系统、污水处理、农业及生物制药等领域中的水泵系统均可以采用这种防汽蚀及降噪装置。
本发明涉及一种超细晶Ta材及其制备方法。所述超细晶Ta材的晶粒尺寸小于等于3μm;其极限强度大于等于410MPa,屈服强度大于等于300MPa。其制备方法为:对钽源进行电子束熔炼,铸锭后,在保护气氛下将铸锭进行包套;进行三维热锻开坯,开坯总变形量65‑75%,开坯温度1150‑1250℃;开坯后,脱除包套并进行低‑高温交叉交替轧制;得到超细晶Ta材。本发明工艺简单,制备的Ta带晶粒均匀,且非常细小,使其具有有利的强度和塑性以及韧性。本发明所设计和制备超细晶Ta带用于备电子、冶金、钢铁、化工、硬质合金、原子能、超导技术、汽车电子、航空航天、医疗卫生和科学研究等高新技术领域。
本发明公开了一种利用Fenton反应去除水体中甲草胺的方法,包括以下步骤:将改性钢渣、原儿茶酸与甲草胺废水混合,加入H2O2溶液进行Fenton反应,完成对甲草胺废水的处理。本发明方法通过利用改性钢渣、原儿茶酸与H2O2溶液进行Fenton反应,不仅实现了对甲草胺有效降解,还实现了冶金炉渣的废物再利用,具有成本较低、处理效率高、处理效果好、投加的化学药剂量少、环保等优点,能够有效地减少传统Fenton氧化反应对水体的酸化作用,防止了水体酸化。
本发明公开了一种Al‑Si‑Fe‑RE‑B合金导体材料及其制备方法,属于冶金材料领域。该铝合金包括下述按质量百分比的元素:Si:0.06~0.15wt%;Fe:0.05~0.10wt%;RE:0.10~0.30wt.%;B:0.05~0.15wt%,其中,Fe与Si两种元素的质量比Fe/Si小于1。制备的铝合金在铸态下的杨氏模量大于等于71GPa,抗拉强度大于等于75MPa,在20℃的电导率大于61%IACS,主要用于制造电解槽用母线、整流站与电解槽间的连接母线、建筑母线、变电站母线、电线和电缆等。
本发明公开了一种含砷物料直接还原焙烧制备砷的方法,该方法以砷酸盐为原料,砷酸盐物料与碳质还原剂混合均匀后,置于惰性或还原气氛中,在负压条件下,进行还原焙烧,收集焙烧烟气,即得砷产品。该方法使冶金过程中常见的以砷酸盐为主的含砷物料还原为化学稳定的单质砷,单质砷不仅无毒且可以作为半导体和合金工业的原料,具有一定的市场价值,还原过程实现了有毒含砷物料的减量化、无害化和资源化,是砷最为合理的走向,极具推广价值。
本发明公开了一种溶液雾化法制备超细锑氧化物的方法,包括以下步骤:(1)将三价锑加入到盐酸溶液中配制成0.05~0.8mol/L的锑溶液;(2)采用清洁氧化剂对步骤(1)溶液进行氧化,得到五价锑溶液;(3)将步骤(2)得到的五价锑溶液进行雾化热解,得到锑氧化物粉末。本发明以三价锑溶液为原料,经氧化和喷雾热解直接制备超细锑氧化物粉体材料,工艺流程简单。本发明还可直接以传统酸法锑冶炼过程的浸出液为原料,缩短了锑氧化物粉体材料制备流程,有效地将传统冶金过程与材料制备过程相结合,大大提升了传统有色金属冶炼产物的附加值,并实现了浸出剂盐酸的回收再利用。
本发明提出了一种电镀污泥的无害化处置及资源化利用新工艺,特别是针对富含铜、铁、镍、锌、铬的复杂电镀污泥。所选用的微生物对电镀污泥适应性强、浸出效果好;采用一步萃取提取铜、铁、锌,有利于后续镍、铬的分离提纯,铁在整个工艺中不会形成任何固相,解决了目前所报道工艺中铁分离时夹带严重或沉铁不彻底问题;采用冶金方法对萃余液进行分离回收,分离效果好、所得产品纯度高。本工艺流程实现了电镀污泥中有价金属清洁、高效、高值回收,且对各种电镀污泥适应性强,电镀污泥达到无害化要求,极具有工业利用价值。
本发明一种从粉煤灰中提取氧化铝的方法,按照CaO/SiO2摩尔比为0.3~1.5和液固比为5ml/g~50ml/g将生石灰、粉煤灰和水配料混合,加入5g/L~100g/L的NaOH调节料浆的pH值,在温度为120℃~260℃的高压密闭容器中反应0.5h~12h,经过固液分离得到以偏铝酸钠为主的溶出液和以水化硅酸钙为主的溶出渣。然后向溶出液中通入体积浓度为10%~100%的CO2气体,随着溶液pH的降低铝氧化合物以结晶物的形式析出,当pH为9.5~8.0时通气结束,再经过固液分离作业得到以片钠铝石为主的结晶物。本发明实现了对粉煤灰中铝资源的低成本回收利用,得到的片钠铝石可以用来生产铝盐化工产品或者经过净化生产冶金级氧化铝等,得到的水化硅酸钙用作生产水泥和混凝土的配料可以提高制品的强度。
本发明提供了一种制备高铁锰矿复合烧结矿的方法,包括以下步骤:(1)包括高铁锰矿精矿、细磨焦粉、膨润土和熔剂在内的原料混匀后,制成球团料;其中,各原料之间的质量比例使球团料的三元碱度满足:0< (CaO+MgO)/SiO2≤0.4;(2)包括高铁锰矿粉、熔剂和焦粉在内的原料混匀后,制成颗粒料;其中,各原料之间的质量比例使颗粒料的三元碱度满足:1.6≤(CaO+MgO)/SiO2≤2.4;(3)将(1)中球团料和(2)中颗粒料混匀,依次经过布料、点火、烧结和冷却,得到碱度为0.4~1.6的复合烧结矿;该方法能够适应多样化原料制备烧结矿,且制备的锰铁烧结矿具有良好强度和冶金性能。
本发明的高速钢锥柄麻花钻涂层工艺技术,它是利用等离子表面熔覆技术对高速钢锥柄麻花钻的主切削刃槽表面融覆,即在表面涂覆高硬度耐磨抗氧化的WC-TICN基金属陶瓷涂层材料与LF-WT11棒材制备涂层技术,其工艺将TICN粉碳化钨粉、碳化锆粉、碳化钼粉、碳化铬粉、碳化钒粉、钴粉、镍粉、(Ta,Nb)C粉按比例进行配料均匀混合,经压制、烧结工艺,制取高速钢锥柄麻花钻涂层材料LF-WT11棒材,再通过各种金属和碳化物之间的高热固熔反应和粘结作用,促使合金晶粒反应完全的紧密结合,主要是通过粉末冶金的配料、压制、烧结理论来实现。
本发明涉及采用粉末冶金法制造稀土永磁材料Sm2(Co,Fe,Cu,Zr)17,尤其是对2 : 17型SmCo永磁体成分的进行设计,进而优化制备工艺,提高材料的使用温度达到400℃以上,满足了国防和军工电力设备在高温环境下对永磁材料的要求。
本发明属于冶金领域硬质合金粉末的制备工艺, 将偏钨酸胺溶解于有机物溶液中,溶液浓度为30%~40%;溶 液在离心式喷雾干燥机中进行喷雾干燥,得到含有钨的络合物 和游离有机物的混合粉末,粉末形状为多孔疏松的空心球体。 将此粉末在气氛或真空中加热,粉末发生还原/碳化反应,在 1000℃时还原/碳化1小时,得到粉末平均粒度为0.2微米,晶 粒尺寸为60~80纳米的超细碳化钨粉末;亦可将喷雾干燥的 粉末在 H2/CH4中进行还原/碳化。本发明大大降低了碳化温度、缩短工 艺过程并节约能源;碳化钨粉末的碳含量能得到精确控制;粉 末粒度细且粒度发布狭窄,是制备超细硬质合金的优良原材 料。
本发明涉及一种石煤氧化焙烧后复合碱浸提钒的工艺方法,属于冶金化工技术领域。其特征在于:石煤原矿磨细至200目占80%左右时加水成球,在平窑中高温焙烧。钒浸出过程采用NaOH和纯碱联合浸出,95℃下浸出3h,石煤焙砂与浸取液质量体积比为1:3g/ml,NaOH与纯碱的添加量分别为40g/L和13.5g/L。石煤经过一次浸出淋洗后进入净化池实现固液分离,石煤球堆存,浸出液直接回流用于新加入石煤中钒的浸出,二次浸出液中按每升浸取液加NaOH13.5g、纯碱4.5g的比例添加浸出剂,回流后用于第三批石煤矿球中的钒浸出。该工艺方法具有污染少、钒提取率高、浸出过程重金属杂质少、耗水量低等优点,在目前的技术条件下具有一定的经济效益。
本发明属于金属冶金领域,提供了全湿法从铅渣中提取铅的工艺,具体为:用Na2CO3将铅渣中PbSO4转变为PbCO3,PbCO3物料经NaOH浸出,浸出液经电积生产电铅,电铅经酸洗回收ZnSO4×H2O,同时提高电铅质量;电积后液蒸发浓缩产出Na2CO3结晶,Na2CO3结晶经熟石灰苛化回收NaOH,蒸发母液和苛化后液返回到碱浸。该方法适应性强,针对不同成分、不同品位的铅渣均可,生产成本比火法工艺低,且铅直收率可达90%以上。
中冶有色为您提供最新的湖南长沙有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!