本发明公开了一种聚双环戊二烯复合材料,是由以下重量百分比的组分组成:0.1-2%的无机纳米填料,0-5%的辅助聚合物微粒,余量为聚双环戊二烯及不可避免的杂质;所述无机纳米填料为含有Si、Al、Ca、Zn、Ti、Zr、Mo金属的纳米无机盐、纳米氧化物、纳米碳化物或纳米硫化物或者含碳的非金属纳米化合物;所述辅助聚合物微粒为粒径在0.5-15微米的聚乙烯、聚四氟乙烯、聚酰胺的粒子。本发明在聚双环戊二烯中共混无机纳米材料和辅助聚合物微粒,制备出聚双环戊二烯复合材料,该纳米复合材料在提高模量和抗冲击强度的同时,也提高了纳米复合材料的耐磨性能,其抗冲蚀磨损性能够达到低铬铸铁的5-9倍。
本发明涉及一种氧化物陶瓷粒子增强Cu基复合材料及其制备方法。本发明属于复合材料领域,以硝酸铝(或硝酸锆)、硝酸铜和偏钨酸铵为原料,分别配制成一定浓度溶液并混合均匀,采用旋风式喷雾干燥法制取复合粉末前驱体,经焙烧得到Al2O3‑WO3‑CuO混合粉末;再将Al2O3‑WO3‑CuO经高纯氢气还原后得到Al2O3掺杂铜钨复合粉末,将复合粉末直接经真空热压烧结制备出Al2O3陶瓷粒子增强Cu基复合材料,其中也可用ZrO2‑WO3‑CuO混合粉末以得到ZrO2,其效果与Al2O3效果相同。本发明工艺过程简单,所制备的Al2O3陶瓷粒子增强Cu基复合材料成分均匀,晶粒细小均匀,杂质含量极低,综合性能指标良好,可以用于受电、高温、磨损和腐蚀交互作用的苛刻工况,且适合大规模工业化生产,具有广阔工业应用前景。
本发明属于纳米骨修复材料技术领域,具体涉及一种钛酸钠纳米棒阵列、钛酸钠/钛合金复合材料及制备与应用。本发明将球磨后的Na2O·2B2O3颗粒或球磨后的不同比例的Na2O·2B2O3和Ca(OH)2颗粒混合物铺覆在钛基体表面进行加热氧化,得到尺寸可调的纳米棒钛酸钠阵列。该钛酸钠纳米棒阵列定向规则生长,与基体结合牢固。本发明还提供了一种钛酸钠/钛合金复合材料,该复合材料以钛合金为基体,基体表面包含上述钛酸钠纳米棒阵列,该复合材料有效去除了医用Ti6Al4V合金表层对人体有害的Al元素,为医用Ti6Al4V合金在骨植入及骨组织修复生物医学等领域的应用提供了基础。
本发明涉及一种增强相定向排布的金属基复合材料及其制备方法,属于金属基复合材料技术领域。本发明的增强相定向排布的金属基复合材料的制备方法,包括以下步骤:在金属复合材料固体熔融的过程中同步将产生的熔液进行沉积成型;沉积成型过程中对所述熔液施加一定方向的电场;所述金属复合材料固体包括金属基体和分散在金属基体中线状导电增强相。本发明的增强相定向排布的金属基复合材料的制备方法,不仅可以同时提高金属基复合材料的韧性和强度,还可以使金属基复合材料的导热、导电性能沿增强相定向排布方向得到大幅提升。
一种一体式复合材料轨枕及其制造方法。所述复合材料轨枕中含有纤维,所述复合材料轨枕的密度在所述复合材料轨枕的径向方向上从内到外增加,并且所述复合材料轨枕的密度的增加通过使所述复合材料轨枕中的纤维的纤维含量在所述复合材料轨枕的径向方向上从内到外增加来实现。本申请的一体式复合材料轨枕的表层强度高,而且轨枕表面的集中载荷能够得到有效分散,从而避免表层完好、内部损伤的问题,延长轨枕的使用寿命。
本发明公开了一种钼基复合材料,包括体积百分比的组分:氧化铝3~20%,其余的为钼及不可避免的杂质。同时还公开了一种该钼基复合材料的制备方法,该制备方法为:采用硝酸铝溶液与氧化钼均匀混合,再进行硝酸铝的分解和氧化钼的还原,得到氧化铝和钼的混合粉末,然后进行冷压,烧结制得均匀分布有氧化铝颗粒的钼基复合材料。所制备的氧化铝颗粒增强钼基复合材料,再结晶温度达到1300℃左右,高温抗蠕变性能是稀土钼合金的1~1.5倍,高温强度和硬度是TZM钼合金的1~1.5倍,高温耐磨性为TZM钼合金的2~4倍。本发明工艺简单,在常规粉末冶金生产钼合金的工艺下即可制备该复合材料,因此具有十分广阔的应用前景和推广价值。
本发明一种机载光电设备的复合材料壳体,包括复合材料壳体、散热侧板、隔热垫、散热背板、扰流风机和电源组件;复合材料壳体的侧壁上开有两个通风口;所述散热侧板安装于复合材料壳体一侧壁面的通风口,与复合材料壳体的内部平台温度最高位置模块相对设置,用于对该位置的对流散热;所述电源组件安装于散热背板的一侧板面上,其另一侧板面通过隔热垫与复合材料壳体的另一侧壁面通风口对接,实现机载光电设备的整机环控散热;所述扰流风机安装于复合材料壳体内,用于加快复合材料壳体的对流换热。本发明将散热板和风机扰流相结合,降低复合材料壳体内腔温差,并加快对流换热;解决了机载光电产品轻量化及自身导热性能差的问题。
本发明涉及一种钨铜复合材料及其制备方法,属于钨基复合材料技术领域。本发明提供了一种钨铜复合材料的制备方法,包括以下步骤:将混匀的钨氧化物、铜氧化物、铝粉和造渣剂进行铝热反应,得到反应物料,经金渣分离后得到合金熔体,冷却后除渣得到钨铜复合材料坯料;钨铜复合材料坯料作为自耗电极进行真空自耗感应熔炼,冷却后得到钨铜复合材料。该方法直接以钨氧化物、铜氧化物和铝粉为原料,通过铝热反应和金渣分离得到钨铜复合材料坯料,可使得原位生成的钨、铜熔体在高温下混合均匀,真空自耗感应熔炼可显著脱除氢与易挥发杂质,明显降低夹杂物含量,熔炼后的钨铜成分较均匀,偏析较少,该方法操作工艺简单,生产成本低。
本发明公开了一种聚双环戊二烯/乙烯共聚物原位聚合共混复合材料,其是由乙烯共聚物双环戊二烯的混合溶液聚合共混而成,乙烯共聚物为乙烯与含8个碳以下的烯烃、丙烯酸烷酯或醋酸烯烃酯的共聚物,其中乙烯的含量为80-95%。同时还公开了该共混复合材料的制备方法。本发明的聚双环戊二烯/乙烯共聚物原位聚合共混复合材料,在双环戊二烯聚合之前与乙烯共聚物充分溶解均匀混合,在钨催化剂和烷基铝共同作用下使双环戊二烯聚合,在聚合的同时实现与乙烯共聚物的共混,得到共混乙烯共聚物的半互穿网络型聚合物复合材料,使材料的冲击强度由原来未共混乙烯共聚物的100J/m提高到150-300J/m,因此共混复合材料具有较高的韧性。
本发明介绍了一种薄镍钛复合材料的制造方法,先将基层钛板和复层镍板通过爆炸焊接复合一体获得镍-钛复合材料,其中,基层钛板的材质为工业纯钛,复层镍板的材质为工业纯镍;再将爆炸焊接获得的镍-钛复合材料放入步进式加热炉中加热并保温;导辊四周设有保温层和加热装置,在轧制前采用加热装置将导辊加热;然后将加热后的镍-钛复合材料进行热轧,得到高质量的薄镍-钛复合材料。本发明的方法可通过一次热轧获得大面积薄镍-钛复合材料复合材料,方便生产,提高效率;材料复合界面结合强度和结合率高,复合材料平整度好,易于校平。???
本发明提供一种聚双环戊二烯/橡胶原位聚合共混复合材料制备方法,该制备方法将橡胶溶于聚双环戊二烯,以芳氧基钨络合物为主催化剂、烷基铝为助催化剂,利用反应注射成型技术原位聚合共混制备聚双环戊二烯/橡胶共混复合材料,通过引入橡胶使聚双环戊二烯材料具有高韧性能,扩大其应用领域。反应注射成型方法可简单、高效地制备一种高性能聚双环戊二烯基复合材料。制备出的聚双环戊二烯/橡胶原位聚合共混复合材料具有更高的抗冲击性能,冲击强度可达到200-400J/M。
本发明介绍了一种复合材料大梁的自动铺放成型技术,在复合材料大梁制造时,伺服电机在程序控制器控制下启动,带动电机转动,进而带动小车沿着轨道往复运动,小车在运动过程中,铺放轮将纤维布铺放到大梁模具表面,从而实现复合材料梁制造过程中纤维布的自动铺放,铺放完成后,在大梁模具表面建立真空导流系统,将树脂灌注到玻纤布的铺层中浸透后,使树脂完全固化后脱模,得到制品。本发明可以降低工人的劳动强度,提高生产效率和和产品质量,实现复合材料梁成型从手工铺层制造向自动化铺层制造的转变。
本发明提出的吸波复合材料的湿法模压成型方法的工艺步骤为:(1)配制树脂胶液,并分散均匀;(2)将纤维织物与配制好树脂胶液湿法接触成型也即湿法铺层定型,铺层过程中将产生的气泡排出;(3)将湿法铺层后的吸波复合材料在平板压机上进行模压、固化;其模压固化方式为:将定型后的复合材料在已预热至40℃的平板压机上固化成型,在稳定的40℃保温30~40分钟,继续升温至80℃,稳定后保温40~60分钟,关闭压机加热装置,在保持压力不变的情况下,自然降温至50℃以下时脱模,可得到吸波复合材料,模压过程全程施加1~2MPA。本发明可弥补现有成型方法所存在的局限性,改善吸波复合材料的耐海洋环境性能,提高吸波复合材料的重现性与可设计性。
本发明公开了一种颗粒增强钼基复合材料,是由以下质量百分比的原料制成:硝酸铝2.52~17.26%,四钼酸铵41.37~48.74%,柠檬酸41.37~48.74%。同时还公开了一种颗粒增强钼基复合材料的制备方法。本发明的颗粒增强钼基复合材料是在钼金属基体中均匀分散有氧化铝颗粒,结合Mo与Al2O3的性能特点制备出的具有较高的高温耐磨性、高温抗蠕变性能和再结晶温度的钼基复合材料;而且本发明工艺简单,在常规粉末冶金生产钼合金的工艺下即可制备该复合材料,因此具有十分广阔的应用前景和推广价值。
本发明介绍了一种橡胶基压电阻尼复合材料及其制备方法,其组成为:天然橡胶100份、粉末硫化剂2.0-2.5份、硫化促进剂2.0-2.7份制备的橡胶基体材料;100-1000份微米级压电常数在300pC/N以上的压电陶瓷粉;0.3-2份导电炭黑。制法包括制备橡胶基体材料、制备微米级压电陶瓷粉并与导电炭黑混合得到预混粉料;预混粉料与橡胶基体材料混合得混合胶料;混合胶料经加热、加压固化成型得橡胶基压电复合材料;再经极化得压电阻尼复合材料。本发明的一种新型橡胶基压电阻尼复合材料,在较宽的频率范围内显著提高了天然橡胶基体材料的阻尼性能,其Δtanδ≥0.1。
本发明公开了一种弥散铜复合材料及其制备方法,属于弥散铜加工技术领域。弥散铜复合材料由以下质量百分数的组分组成:Al2O30.24~3.74%,Y2O30.03~1.27%,余量为Cu及不可避免的杂质。本发明以Cu2O粉末和Cu-Al-Y合金粉末为原料,经混料、压制、烧结内氧化、挤压、锻造制备弥散铜复合材料,该复合材料具有高强度和高导电性,强度在500Pa以上,电导率在80%IACS以上,克服了其他复合材料高强度与高导电不可兼得的缺陷,同时具有优良的抗软化性能,高温强度高,塑性好,软化温度在800℃以上。
本发明公开一种碳纤维混杂树脂基复合材料,其以玻璃纤维和碳纤维作为增强体、不饱和聚酯树脂、乙烯基树脂或环氧树脂作为基体而形成的复合材料,碳纤维混杂增强体中碳纤维质量百分比为50%~90%,该复合材料为一由内至外依次包括第一玻璃纤维增强复合材料层、第一碳纤维增强复合材料层、第二玻璃纤维增强复合材料层、第二碳纤维增强复合材料层和第三玻璃纤维增强复合材料层的多层叠加型结构,铺层方式为0°/90°;碳纤维、玻璃纤维的编织方式均是平纹编织、斜纹编织、缎纹编织、单向编织、多层多轴向编织中的一种或多种;同时提供碳纤维混杂树脂基复合材料的制备方法。本发明碳纤维混杂树脂基复合材料力学性能好,透声性好,耐海水腐蚀。
本发明属于复合材料连接技术,具体涉及一种缠绕成型复合材料传动轴与金属法兰的连接方法,缠绕成型复合材料传动轴主体结构与两端金属法兰之间通过胶接和机械连接相结合,机械连接包括销键连接和螺钉连接;主体结构与法兰的连接部位也可以通过纤维缠绕复合材料增厚。采本发明的连接方法,其胶接结构具有一定的变形能力,减少了连接部位的应力集中问题,胶接和机械连接相结合增加了连接部位的强度和抗变形能力,实现扭转、拉、压载荷的平稳传递,可有效解决缠绕成型复合材料传动轴的可靠性连接问题,推动复合材料作为传动轴主体结构材料在更广领域的应用。
本发明公开了一种大断面 WCP/Fe-C复合材料-球铁复 合结构辊环,其由高耐磨 WCP/Fe-C复合材料工作层和 强韧芯部球铁基体合金组成, 所述芯部球铁基体合金成分范围 为3.0-3.8%C,2.0-2.8%Si,<0.4%Mn,0.2-0.3%Mo,3 -5%Ni,0.04-0.06Mg,0.05-0.08RE,S、P≤0.03。本发明 辊环表面复合材料工作层中WC颗粒尺寸75-200μm,体积 分数可根据使用工况要求控制在50-85vol%。辊环复合材料 工作层中WC颗粒分布均匀,复合材料工作层厚度可在10- 30mm之间任意控制。辊环表面复合材料工作层利用率高(大于 95%);辊环芯部球铁基体合金可再循环利用;辊环采用离心铸 造法制备,工艺简单,制造成本低。
本发明介绍了一种金属复合材料结合界面分离试样的制备方法,从金属复合材料整板上取样,将试样沿厚度方向加工成哑铃状,基层和复层金属厚度方向为哑铃状试样的长度方向,使金属复合材料的结合界面置于哑铃状试样的中间位置,在哑铃状试样的开V形槽,V形槽的底部交叉线和金属复合材料结合界面线相重合,用50吨万能材料试验机拉断,金属复合材料的结合界面完整分开,根据试验需要切取试样。本发明可将厚度较小的金属复合材料的结合界面完整分开或将多层金属复合材料的某一结合界面完整分开,解决了金属复合材料结合界面难于完整分离问题。
本发明涉及了一种铜铝复合材料的分离方法,包括以下步骤:1)将铜铝复合材料加热至430~540℃,保温至铜铝复合材料的剥离强度为3N/mm以下,冷却,剥离;2)将剥离后的铜复合层放入碱溶液中,浸泡至铜复合层的复合面呈现出铜单质的颜色。本发明的铜铝复合材料的分离方法,分离效率高,且分离效果好。通过对铜铝复合材料的进行热处理,使得铜铝复合材料的铜和铝之间的结合强度急剧下降,使得铝基体更易于从复合材料上剥离,提高了分离效率;同时减少了铜复合层上残留铝的量,提高了回收率。
本发明涉及一种基于硅基分子筛结构的硅碳复合材料及其制备方法以及含该材料的锂离子电池,通过将硅基分子筛中氧化态的硅还原为单质,并在分子筛孔道中将糖类或烃类碳化,形成硅碳材料,该硅碳材料能够用作锂离子电池的负极材料,具有优越的循环性能。
本发明涉及一种石墨烯‑钛酸锂复合材料及其制备方法、补锂石墨烯‑钛酸锂薄膜、锂电池,属于钛酸锂电池制备技术领域。本发明的石墨烯‑钛酸锂复合材料的制备方法,包括以下步骤:1)在石墨烯薄膜表面沉积锂盐,得改性石墨烯薄膜;2)将步骤1)所得改性石墨烯薄膜置于钛源溶液中于60~80℃条件下反应1~6h,得石墨烯‑钛酸锂前驱体;3)将步骤2)所得的石墨烯‑钛酸锂前驱体于600~900℃煅烧6~12h,即得。本发明的制备方法,原料简单,容易操作,在石墨烯上沉积的锂盐与二氧化钛反应生成钛酸锂,可以使石墨烯与钛酸锂之间的结合力更强,提高锂离子的传输速率及倍率性能。
本发明公开了一种以 Cr2O3为基的耐火复合材料。这种复合材料是在电熔 Cr2O3合成料基体中,引入适量 Y2O3和活性烧结 Al2O3,活性工业 Cr2O3,经成型和高温烧成制得。 Y2O3和 Al2O3在该材料中起着活化主成分 Cr2O3晶格作用,从而降低材料的烧成温度,提高成品率,降低 生产成本。与此同时, Y2O3与熔渣具有良好的相容性,可改善其抗渣蚀性和抗渗透 性,也可避免现有材料中ZrO2 与熔渣反应导致的体膨效应,引起材料的过早损毁, Y2O3也不含放射性物质对人体健康的损害作用。
本发明涉及一种颗粒增强钼/钨基复合材料的压制、烧结新方法,属于粉末冶金技术领域。本发明的压制、烧结新方法,对于费氏粒度不大于2μm的粉采用两次压制的方式得到压制坯,对于费氏粒度为2μm以上的粉,直接压制;对压制坯先氢气烧结,再进行真空烧结,且氢气烧结采用低温烧结和高温烧结相结合的方式。该方法的压制和烧结方式,可有效脱氧和提高致密度。采用两次压制的方式,有效提高了细粉的压制成品率,在进行氢气烧结时,采用低温烧结以充分脱氧,然后再进行高温烧结,在进一步提高脱氧程度的同时,有效缓解了闭孔,进而保证在真空烧结时,有利于空隙中的气体排出,为真空烧结提供更大的烧结驱动力,使得烧结坯具有更高的致密度。
一种立磨机金属基陶瓷复合材料磨盘及其制备方法,其磨盘基体上设有多个凸起,相邻两凸起间设有用金属基陶瓷增强体料制成的衬板,金属基陶瓷增强体料由10-40%的Al2O3和60-90%的铁粉组成;制备方法是将按上述重量百分比称取的Al2O3和铁粉混合后送入烧结窑中烧至铁粉完全熔化,将烧好的物料放入模具中制得衬板,将衬板置于磨盘基体上的凸起之间,浇铸钢水使衬板与磨盘基体固结为一体。本发明烧结时通过铁粉的塑性吸收外加负荷,消耗裂纹尖端的能量;通过孔洞浇铸钢水,将衬板与磨盘基体连结成一体,钢水通过孔洞浸润到衬板的陶瓷颗粒之间,将陶瓷颗粒包裹其中,使陶瓷相和金属相均匀分布。
本实用新型提供了一种浸渍模具及连续纤维复合材料的生产装置,所述浸渍模具中设置相互连通的树脂熔体流道(5)、连续纤维铺设流道(10),其特征在于,所述浸渍模具上设有树脂出口管路(9),所述树脂出口管路(9)与树脂熔体流道(5)连通,用于对过量的树脂熔体进行回收;本实用新型实现了对纤维双面的熔融浸渍,提高热塑性树脂对连续纤维的表面浸渍程度;同时实现了连续纤维复合材料预浸带的生产过程和热塑性树脂的回收再利用过程的同步进行,解决了生产过程中过量的树脂熔体造成的模具漏料问题。
高模量抗冲击碳纤维复合材料及其制备方法,由碳纤维织物置于基体溶液中固化而成,所述基体溶液的原料组成为:45~63重量份的环氧树脂、3~5重量份的滑石粉、26~34重量份的二氨基二苯砜、体积与环氧树脂总重量的比例为2.4mL:1g的丙酮溶液、1~2重量份的单层氮化硼、1.2~2重量份经过硅烷偶联剂改性的氮化硅、1.2~2重量份经过硅烷偶联剂改性的二硫化钼和0.2~1重量份的消泡剂。与现有技术相比,本发明以碳纤维织物作为增强骨架填料,金属或者非金属作为支撑体,通过环氧树脂粘结剂粘结而形成自润滑复合材料,其具有承载能力高、摩擦系数低、耐磨寿命长以及密度低等特性。
石墨烯‑铬钛铝复合材料的制备方法及其在刀具上的应用,通过激光束辐射,使其与刀具表层材料一起熔化接着迅速凝固,获得稀释率小、与刀具材料相容性较好的表面涂层,该表面涂层实际上是一种高致密结合的石墨烯复合熔敷层,使刀具基体材料与涂层材料有机地结合在一起。从而,刀具的抗磨、抗蚀、耐氧化等综合性能得到明显提高,实现刀具表面修复或改良等目的。主要制备条件为:石墨烯纳米粉占复合材料总质量的百分比为5~15%,Ti粉末占复合材料总质量的百分比为20~25%,Al粉末占复合材料总质量的百分比为20~25%,Cr粉末占复合材料总质量的百分比为35~55%。
中冶有色为您提供最新的河南洛阳有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!